

SPACE GAMES

Competition and collaboration in multi-agent reinforcement
learning for automated apartment floor plan generation

L.CHEN,

UNSW, Sydney, Australia

Levin.chen888@gmail.com

Abstract. Space Layout Planning (SLP) is a 60 years old problem
with the ultimate solution of automation. Throughout the year,
researchers experimented various ways to achieve the final solution,
but those solutions do require minor manual adjustments. During this
research, the author has discovered many researches that utilises the
concept and method of reinforcement learning to encounter the
problem of SLP and in this research, a new and young method for the
AEC industry which also comes from the discipline of reinforcement
learning, will be utilised to solve the problem of SLP. Multi-agent
reinforcement learning (MARL) is a newly rising machine learning
method to solve complex problems and is not often used in the AEC
industry yet, but it has been widely developed in other disciplines,
such as robotics, telecommunication and economics to address any
complex problems. This project will try to fit MARL into SLP and try
to achieve the ultimate solution through the usage of multiple software
and plugins. The method involved five user inputs, the boundary
outline for the floor plan, the position of the core block which consists
of the elevator and fire exits, the corridor, the number of units and size
of each unit. The inputs will then be taken and process within various
software tools, such as Rhinoceros 6 and its visual scripting plugin
Grasshopper, and TianShou python framework. The core objectives
for this research is to generate a successful floor plan covering 100%
of the given area from the boundary and maximise solar access for
every unit generated with a public corridor access. This project will
contribute to the grow scholarship of machine learning usage in the
AEC industry and the system designed will contribute to automate
floor plan generation, especially in mix-used residential apartments.

Keywords. Machine Learning: Multi-agent Reinforcement Learning;
Space Layout Planning; Floor Plan Generation.

2 L.CHEN

 1. Introduction: (Research context and motivations)

The automated generation of floor plan layouts has been explored by

architects and computer scientists alike to address Space Layout Planning

(SLP) in various ways for almost 60 years and remains an elusive goal

(Lobos & Donath, 2010). Current methods feature a range of drawbacks

including the inability to automate for complete land coverage and generated

options still requiring manual adjustment. Accepting that a human will

always be integral to the process of SLP regardless of automation, there are

opportunities to improve the current automated process of layout generation

and few approaches to date have explored the value of multi-agent

reinforcement learning (MARL) in this process. MARL is a branch of

reinforcement learning which is one type of machine learning algorithm.

More specifically, MARL involves multiple 'agents' programmed with

restricted actions to work competitively and collaboratively and the goal of

trying to achieve the highest reward in a defined environment. While MARL

is a relatively recent approach for the AEC industry, it has been widely

developed in a variety of areas, including robotics, distributed control,

telecommunications and economics to address the complexity of the arising

problems. (Busoniu & Babuska & De Schutter, 2010)

 Accordingly, this research project investigates the role of MARL for

generative design processes. Adopting an action research approach, this

research project follows a cyclical process of planning, acting, reflecting and

revising in collaboration with an industry partner HDR to develop a MARL

integrated generative design workflow for SLP. More specifically, the

workflow developed in this research uses Rhinoceros 6 with the Grasshopper

visual scripting plugin to prepare the input data. The workflow further uses a

Python library framework, Tianshou, for multi-agent reinforcement learning

and application. The method involves five user inputs: the boundary of the

floor plan, the core block including the position and size of elevator and fire

exit staircases, number of units and type of each unit that needs to be

planned, also the corridor paths that connects all regions together. The

boundary lines will be divided into square grids creating cells that have one

square metre per cell using Grasshopper plugin. Then through the Ladybug

solar analysis, returning a solar value for each cell which will help the user

to identify its core block position and corridor paths, exporting all data into a

CSV file, passing it and the information of units to a built multi-agent model

Python script for a solution.

 The core objectives of the developed workflow are to cover all blank

cells, to maximise the solar access area of each unit and to connect each unit

to a corridor. This research will contribute to the growing scholarship on

machine learning approaches for architecture in general and more

specifically to the less explored techniques of MARL. Developing alternate

 SPACE GAMES 3

automated space planning methods will contribute to enhancing the design

process by generating the most optimal floor plans within the shortest time

frame, providing extra choices for both designers and clients, clearly

showing the possibility of the designed residential apartments. This system is

designed to contribute to the space planning problem in mix-used residential

apartments.

2. Research Aims

This research project hopes to achieve the ultimate solution of SLP with 3

main objectives:

• Efficiency

- Full land coverage (land use) for a given boundary

- Time used to generate one successful plan

• Optimisation

- Maximise area has solar access during winter

- Every unit should have access to the public corridor

• Realistic

- Shape of units

- How each unit intersect with each other

3. Research Question(s)

How can multi-agent reinforcement learning be more efficient in
number of layouts generated and accurate in realistic aspect of plans
when applied to unit layout inside of a mix-used residential building?

4. Methodology

Reinforcement learning as a branch of machine learning, it is somehow

unique from other branches. Supervised and unsupervised learning are both

dependent on the amount and quality of training data that they receive to

produce an optimal solution, but reinforcement learning requires the

minimum of data to construct an environment that suits the problem, and

interact with certain constraints in the environment for an optimal solution

through trial and error. From O’Brien, R. 1998, “put simply, action research

is “learning by doing” - a group of people identify a problem, do something

to resolve it, see how successful their efforts were, and if not satisfied, try

again.” To put it even more simpler, action research is research process

through trial and error which is a fundamental method of problem-solving

and the concept that is used in reinforcement learning to allow the machine

or agent develop itself to output the best outcomes.

4 L.CHEN

For my research, to explain my proposed process, I will use the AR cycle

(adapted from Baskerville. 1999).

1. Diagnosing – The problem to be solved here is the efficiency of unit

layout inside of a mix-used residential building in two perspectives. First, the

efficiency in land use – to achieve 100% full land coverage. Second, the time

used by the solution to generate a successful plan. But to generate a

successful plan, two more objectives are required, optimised adjacency and

unit plan shape, which means each unit will need natural lighting and access

to corridor, also to be generated in a realistic shape.

2. Action Planning – Throughout my research, the space planning problem

has been explored by many professionals through different methods. Out of

many approaches, evolutionary solver and reinforcement learning interest

me the most. However, evolutionary solver was explored frequently,

reinforcement learning was decided to be the methodology used as the

proposed solution. It is required to build an environment, agents that will

learn and the criteria for scoring agent’s solution. The environment is built

by dividing given boundary into square grids and allocate rewards to each

cell for agents to occupy and earn the rewards for its score. Criteria will

indicate how successful each agent is and fails the agent when certain

requirements are not met, e.g. if an agent does not occupy any cell that is

adjacent to the corridor which shows no access to egress, will fail the criteria

and result in a failed generation.

3. Action Taking – By applying the multi-agent reinforcement learning, the

prototype will hopefully start to develop itself to suit the criteria and

generate successful plans.

4. Evaluating – To judge if the prototype worked successfully and adjust the

criteria and rewards for the next iteration.

5. Specifying Learning – Understand which factors are important and

crucial for generating successful plans with multi-agent reinforcement

learning.

5. Background Research/Literature review

“The procedural generation of a city entails a number of ingredients, each

with its specific procedures and generation techniques” Floor planning is an

important if somewhat neglected ingredient. (Lopes et al. 2010, p.1) In this

paper, the author reviews the research of multi-agent space plan generation.

The research will be reviewed in two parts, multi-agent methods for floor

planning, and reinforcement learning as a potential solution to the problem.

5.1. MULTI-AGENT METHODS

For modern floor planning, “we hypothesize that a system that can

computationally generate vast numbers of design options, respect project

 SPACE GAMES 5

constraints, and analyse for client goals, can assist the design team and client

to make better decisions.” (Das et al 2016, p.106) Autodesk sees “generative

design technology delivering the ideal combination of innovation and

productivity required to help companies address the challenges of this

disruption” (Harvard Business Review & Autodesk, 2018). With the power

of machine learning, Autodesk can generate multiple solutions

simultaneously using generative design. Multi-agent based modelling that

came from the discipline of generative design will be able to share the same

characteristics of generate multiple solutions within the shortest frame of

time.

 An agent is an entity, also a distinctively higher scale software

abstraction that defines a complex software unit in an efficient and

convenient way (Abar & Theodoropoulos & Lemarinier & O’Hare, 2017). In

the context of space planning, each agent will represent one module of the

floor plan which can interact with other agents and environment. Modules

can be different components in different floor plans, a module can be a unit

when constructing a unit layout plan for an apartment floor, it can also be a

bedroom when constructing a house floor plan. Modules are classified into

two groups, soft and hard, soft module will be able to resize its dimension

without changing the required area and by fitting multiple modules into one

environment, a multi-agent system for space planning is formed. A multi-

agent system will consist with numerous agents sharing the same

environment while interacting with the environment, they can also interact

with each other to communicate and exchange information for the shared

environment. (Schneider & Fischer & Koenig, 2011) By manipulating the

multi-agent model, it allows more generative methods to be applied in the

environment for a better and more realistic result.

 From (Veloso & Rhee & Krishnamurti, 2019) literature review, multi-

agent space planning can be categorised into three types, “agents as moving

spatial units”, “agents that partition space” & “agents that occupy a space”,

each with a different interpretation of space. First type, agents as moving

spatial units, is a very popular solution with packing algorithms and physics

engine. Each individual agent represents a module which allows them to

interact with each other to achieve the required spatial objectives. Second

type involves agents defining their own territory within the space by splitting

or partitioning.

 The third type agents will allocate themselves through pre-defined grids,

cellular automata is an example of the type 3 approach. “Cellular automata

consist in their simplest form of a grid cell whose cells change their states

depending on the states of their neighbouring cells.” (Toffoli & Margolus,

1987) As explored by Toffoli & Margolus, a cellular automata system works

with the same principles that a floor plan generator has. By dividing the

6 L.CHEN

given boundary or perimeter, it gives a much better or simpler way to

consider the interaction that we need among the agents or modules. From

(Slager et al. 2008 p.3), “cellular automata models are able to generate

complex spatial structures based on relatively simple set of rules.” In type 3

approach, by implementing defined rules, agents will follow the transition

rules, occupy certain cells and change their cell states to form their own

border against other agents which will result in a floor plan. Multi-agent

based modelling has been deeply explored in the field of floor plan

generation with aspects of machine learning but reinforcement learning as a

branch of machine learning was explored far less times than multi-agent

methods.

5.2. REINFORCEMENT LEARNING

Reinforcement learning is an area of machine learning that deals with how to

learn which actions to take in a given environment, in order to maximize a

given long-term reward (Sutton & Barto 1998). The given environment of

space planning will be the boundary perimeter and by dividing the boundary

into grids, a cellular automata environment will be formed for agents to use

reinforcement learning algorithm to develop themselves. The rewards are

then set based on the cell positions and data, e.g. cell contains higher value

for sunlight hours will have a higher reward for an apartment agent, and

elevator agents will get better rewards if they occupy a cell with low hours

of sunlight. As a branch of machine learning algorithm, reinforcement

learning also requires training, but it does not need examples unlike

supervised learning, it only interacts with the environment for an answer

which allows dealing with uncertainty, making it capable to consider more

realistic and non-isolated (with noise data) environment. (Ruiz-Montiel et al.

2013) By combining reinforcement learning and multi-agent based model, a

new approach is created, multi-agent reinforcement learning

(MARL).“MARL aims to provide an array of algorithms that enable multiple

agents to learn the solution of difficult tasks, using limited or no prior

knowledge.” (Busoniu & Babuska & De Schutter, 2010) It is a relatively

new approach/method to evaluate the space planning problem, for a simple

environment, it is often made with grids, which is the cellular automata

approach to help and maximise the number of solutions for clients to make

better decisions.

6. Case Study (Iteration 1)

6.1. USER INPUTS

The initial user input required for this project is the boundary polyline of the

floor plan. It will be processed in Rhinoceros 6 and its visual script plugin

 SPACE GAMES 7

Grasshopper. A simple script is created on Grasshopper to divide and

construct square grids within the given boundary that each square will be

equivalent to an area of one square metre.

Figure 6.1.1. Script in Grasshopper that divides boundary outline into square grids.

Figure 6.1.2. A floor plan divided into square grids.

 For this project, a regular rectangle is used as an initial step to develop

the MARL tool. The grids will be duplicated and elevated to construct a

multi-level apartment floor plans, then analysed by Ladybug which allows

analysis of standard weather data in Grasshopper.

8 L.CHEN

Figure 6.1.3. Perspective view of analysed multi-level floor plans.

Figure 6.1.4. Top view of an analysed floor plan.

 It indicates a value to each cell showing the hours of sunlight that they

will receive during winter-time, which helps the user to define the position

of their second input, the core block (involves elevator, fire staircase, public

corridor).

Figure 6.1.5. Perspective view of core block position.

 The square grids will form a coordinate system for the data structure,

while the solar hours of each square and core block position will be added

into the data table as attributes to each square cell. The table will then be

exported as a csv file to be used later during the method.

 SPACE GAMES 9

TABLE 6.1.1. A table shows part of the data within the csv file.

6.2. AGENT ACTIONS

The action defines how each agent will grow within the given floor plan

boundary. In order to grow while allowing the agents to make a choice in

their actions, four actions were planned initially to correspond the four

direction that agents can grow. The action was designed to grow based on

the numbers of its columns or rows, depends on the direction of growth. For

example, when an agent receives a command to grow upwards, the agent

will try to grow and occupy the number of its columns of cells upwards.

However, the action will be cancelled if any of the cells that the agent tries

to occupy has been occupied by other agents or is a core block cell.

Figure 6.2.1. Showing the action is not viable because it was blocked.

The second version of actions was developed to allow interlocking

among the agents’ growth. The requirements for agents to grow has changed

from requiring the cells that the agent tries to occupy to be 100% blank to

over and including 50% as the ratio of blank to occupied.

Figure 6.2.2. Showing the action is viable because of the new rules.

10 L.CHEN

6.3. REWARD FUNCTION

The reward function is crucial factor in the reinforcement learning system. It

indicates the direction or how the agents will learn within the defined

environment. The reward function acts as the dog treat when training a dog

to follow orders. In this iteration, the focus in the reward function is to

achieve the first objective, full land coverage. The logic is written as shown

below:

Figure 6.3.1. Iteration 1 reward logic.

6.4. TIANSHOU ENVIRONMENT

TianShou is an open-source, light-weight python library that allows

reinforcement learning neural networks training, especially MARL training.

The environment in this project consists of action functions, reward

functions, a rendering function, a reset function, and a step function. It acts

as a wrapper that packs all functions to allow interactions between the agents

and the environment.

Figure 6.4.1. Relationship among each component in TianShou Framework.

Source: https://tianshou.readthedocs.io/en/master/tutorials/tictactoe.html

6.5. TRAINING AGENTS

Before the training session starts for the agents, there are few preparations to

be done. Firstly, any environment requires an “end signal” to tell the neural

network to stop this environment and calculate the rewards, allowing the

neural network to study the behaviours. There are two “end signals” used in

 SPACE GAMES 11

this iteration, the environment will be stopped when every single cell has

been occupied or every agent cannot move/make any actions

anymore/become locked. For any agent to become locked, it requires the

agent to occupy more cells than its max value or it cannot grow in any of the

four directions as it gets blocked by other agents. The two “end signals” will

result in the final rewards of the training session.

Figure 6.5.1. Combined logic of end signal and reward function.

7. Discussion (Iteration 1)

In this section, two types of policies will reveal their results, the random

policy and deep Q-learning neural network (DQN).

Legend:

A, B, C, D = Unit Agent

 X = Core block + Corridor

 _ = Blank Cells

7.1. RANDOM POLICY OUTCOME

The training starts with utilising random policies for the agents, which

means the agents will not be developing any logic for their actions and have

random choices for any actions. This process is to test any abnormality or

bugs within the environment code, which means this process is for

debugging purposes. However, here shows some interesting results from the

random policy.

12 L.CHEN

Figure 7.2.1. A random policy result that achieved the objective.

In Figure 7.2.1, a perfect result for the current iteration is shown. This is

a result should not be happening with random policy implemented agents but

trained policy agents. The results proved the simplicity of the environment,

too much restrictions are applied to the agents as there is one type of action,

“growth”, and the agent is also restricted by its code as it will become locked

for taking any actions when it occupies more cells than its max value.

7.2. DQN POLICY OUTCOME

DQN is a reinforcement learning algorithm that is based on a value called Q-

value. The algorithm will generate a Q-value corresponds to each action, as a

higher Q-value means that action has more chances to earn more rewards for

the agent.

Figure 7.2.1. A DQN policy result failed to achieve the objective.

From Figure 7.2.1, a result has been shown that the policy has failed. In

comparison with the random policy result, DQN policy performed worse to

random decisions made random policy. This reinforces the need of freedom

 SPACE GAMES 13

for the agents in two perspectives, more types of action and less restriction to

the agent.

7.3. CHANGES FOR ITERATION 2

• Add another type of action for the agents

• Removing the “locked” status when the agents occupies

more cells than its max value and punish them in the reward

function for exceeding the max value.

8. Case Study (Iteration 2)

8.1. AGENT ACTIONS

Another type of action is added to give more choices and freedom to the

agent to account the problem mentioned in first iteration’s discussion. The

action added is to “withdraw” the occupied cells. Same as the “growth”

action, “withdraw” can also be called in four directions, while the

requirements for an agent to “withdraw” is simpler. It requires a shape with

at least two rows to do a vertical “withdraw” action (Top/Bottom), and at

least two columns to do a horizontal “withdraw” action (Left/Right). The

reason for these two requirements is to forbid the decision for an agent to

eliminate itself from the environment.

Figure 8.1.1. A 2×3 area allows withdraw vertically and horizontally.

Figure 8.1.2. A 1×3 area allows only vertical withdraw.

14 L.CHEN

8.2. REWARD FUNCTION

The reward function has developed to reward and punish based on multiple

objectives simultaneously. In addition to the objective of full land coverage,

solar access, corridor access and unit size are also in calculation for rewards.

The added objectives can lead into two more aspects for consideration in the

reward function, the number of window cells and the ratio between the

number of window cells and corridor-access cells. The number of window

cells is an important factor for solar rewards as it allows natural sunlight to

pass through into the unit, hence it effects the solar rewards directly.

The logic is written as below:

Figure 8.2.1. Iteration 2 reward logic.

9. Discussion (Iteration 2)

There are 3 different results from the training sessions.

 SPACE GAMES 15

Figure 9.1.1. Result from first training session

From Fig 9.1.1 shows a scene of agent “A” “bullies” all other three

agents. It indicates a problem within the rewards function, as it did not give

enough punishments to agent “A” for exceeding the number of cells

occupied while trying to achieve the objective of no blank cells.

Figure 9.1.2. Result from second training session

Fig 9.1.2 shows a scene of a changed reward functions, all four agents

are not growing, can be caused by the reward function over-punishes the

agents during the training session.

Figure 9.1.3. Result from third training session

Fig 9.1.3 shows a much well-trained agent, “C”, as it develops the idea

of size and solar access to achieve the highest rewards, but still not perfect

for an automated floor plan generation use.

16 L.CHEN

 Throughout the results, two major changes will be made in the following

iteration development:

- Rewards Function

- MARL base library – TIANSHOU

As shown from the results, the current rewards function cannot train the

agents perfectly as this project is focused on MARL. It did not satisfy to

train all four agents within the same environment, but only one agent is

trained instead. This leads into the second major change, the base library –

TIANSHOU. TIANSHOU is a light-weighted and beginner- friendly MARL

python library. However, from its developer’s description, the feature of

training multiple agents in conjunction has yet to be tested. The feature still

has a possibility to be successful but in the current stage, it is not the perfect

tool to continue this project. A replacement of the base library will be

another reinforcement learning library, RLlib, which is a more developed

open source library providing more advanced tools to train agents.

 During this research, many researches that utilises reinforcement

learning as the method has been found, but to use MARL as a solution for

SLP has yet to be discovered on the internet publicly. This research can be

the first step of utilising MARL to solve problems in the AEC industry

which already has performed its abilities in robotics and economics. To

extend its abilities into the AEC industry, from this project, it maybe limited

by the performance of the library and the knowledge base of the author.

However, the potential for MARL to shine is not only within the scale or an

apartment floor plan. It can be also utilised in a master planning scale, such

as town planning and urban planning.

10. Conclusion

Developing reinforcement learning methods for Space Layout Planning can

generate a more optimised and efficient residential apartment floor plan. In

this project, this has been explored with multi-agent reinforcement learning

(MARL) which is based off a branch of machine learning, called

reinforcement learning, which involves the agent with restricted actions to

learn the way of how to achieve the highest rewards in a built digital

environment. While MARL, has the feature of multiple agents to learn how

to function collaboratively and competitively within the same virtual

environment. From the results, the base library to use for this MARL method

may not be the best choice in long term but a perfect choice for this 10-week

project. The results may show unsatisfactory outcomes, but there is a huge

potential for this method to be successful, not just in floor plan generation.

The method can also be applied in town planning, urban planning, or any

master planning projects. With the same concept of this project, the agents

 SPACE GAMES 17

will be placed in an environment to fight for their most desired areas, but

many objectives will be alternated to suit the different projects.

This can be the very first step of using MARL in AEC discipline which

could lead to more advanced technologies, such as digital twin, to simulate

the city growth and plan ahead of time to overcome problems like over-

populated areas. The MARL has many more uses in the AEC industry, this

project has only shown a small percentile of its capability, it may even build

a fully AI-driven virtual city, but it will take further development and

training to evaluate a perfect outcome.

Acknowledgements

I would like to thank my industry partner, HDR (Leo, Jeremy, Stefano and Tina), for their

valuable suggestions and guidance throughout this research project.

I would also like to thank the developer of Tianshou, Jiayi Weng, for his technical support

and help for his understanding about TianShou.

Finally, I would like to thank my tutors, Nicole, Hank and Daniel, for their guidance and

suggestions in this research project.

References

Schneider, Sven & Fischer, Jan-Ruben & Koenig, Reinhard. (2011). Rethinking Automated
Layout Design: Developing a Creative Evolutionary Design Method for the Layout
Problems in Architecture and Urban Design.

Busoniu, Lucian & Babuska, Robert & De Schutter, Bart. (2010). Multi-agent Reinforcement
Learning: An Overview.

Veloso, Pedro & Rhee, Jinmo & Krishnamurti, Ramesh. (2019). Multi-agent Space Planning:
A Literature Review.

Das, Subhajit & Day, Collin & Hauck, Anthony & Haymaker, John & Davis, Diana. (2016).
Space Plan Generator: Rapid Generation & Evaluation of Floor Plan Design Options to
Inform Decision Making

Lopes, Ricardo & Tutenel, Tim & Smelik, Ruben M. & de Kraker, Klaas Jan & Bidarra,
Rafael. (2010). A Constrained Growth Method For Procedural Floor Plan Generation

Ruiz-Montiel, Manuela & Boned, Javier & Gavilanes, Juan & Jiménez, Eduardo & Mandow,
Lawrence & Pérez De La Cruz, José-Luis (2013). Design with shape grammars and
reinforcement learning

Sutton, Richard S. & Barto, Andrew G. (1998). Reinforcement Learning: An Introduction

Slager, Kymo & Vries, B. & Jessurun, A.K. (2008). Methodology to generate landscape
configurations foruse in multi-actor plan-making processes.

Abar, Sameera & Theodoropoulos, Georgios & Lemarinier, Pierre & O'Hare, Gregory.
(2017). Agent Based Modelling and Simulation tools: A review of the state-of-art
software. Computer Science Review.

Toffoli, Tommaso & Margolus, Norman. (1987). Cellular Automata Machines. Complex
Systems.

Harvard Business Review & Autodesk. (2018). The Next Wave of Intelligent Design
Automation. E-book.

