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Abstract. Embodied carbon (EC) is difficult to quantify in the early 
stages of design without detailed design information. In the later design 
stages, when EC analysis is traditionally performed, higher sunk costs 
can be incurred, and key design decisions are often irreversible. 
Additionally, both clients and designers are becoming increasingly 
aware of the environmental impacts of their projects and how they can 
meet or exceed sustainable energy/environmental performance targets. 
A process that assists with predicting EC based only on simple early 
models could help to ground sustainable design principles in all early 
stage decision-making as well as influence the likelihood of realising 
more sustainable design outcomes overall. The tool this research 
proposes would utilize a subset of machine learning called case-based 
reasoning (CBR), in which a database of previous examples is searched 
using regressive modelling for applicability and similarity to an early-
stage geometry, and known EC values are applied to the new geometry 
parametrically to give an estimate of its predicted EC value. The 
following research builds on the recent uptick of applying machine-
learning (ML) methods to the architecture and construction industry, 
and extends it further by linking CBR methodology to supporting these 
sustainable design decisions. 
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1. Introduction: Research Context and Motivation 

It has been apparent for decades that human activities have drastically 
influenced the Earth’s climate. The construction of new buildings accounts for 
up to 39% of energy-related carbon dioxide emissions, 36% of global energy 
use, and 24% of the raw materials extracted from the Earth’s lithosphere, 
annually (Dean et. al. 2017, Bribian, 2020). These building and construction 
industry emissions figures are particularly worrying given the United Nations 
Framework Convention on Climate Change (UNFCCC) estimates that 230 
billion square metres of new construction will be built in the next twenty years 
– the equivalent of the entire city of Paris every week (Birol, 2017). Existing 
approaches to addressing EC are valuable from a statistical standpoint, and in 
their current form they help designers understand the extent of EC in a 
building in the final stages of design. But these approaches are limited by their 
need for detailed project data, hence their prevalence in the later stages of 
design as reporting tools, as opposed to design-support tools. EC tools are well 
positioned to better assist designers appreciate the impact of EC content in 
building materials both more generally and in relation to the specific 
geometries they propose, and help influence the likelihood of lower EC 
content in building projects overall.  There is, therefore, incentive to actively 
research new methods of EC estimation which can contribute to reducing the 
carbon impact of new buildings and develop tools which enable designers to 
be aware of the effects their decisions have on this carbon impact, earlier and 
with more information at hand. 
 
EC, specifically in materials, refers to the carbon expended and emitted in 
their production, construction and end of life phases, but not in their use 
phases (Augusti-Juan, I 2017). It is both in the designer’s and stakeholder’s 
best interests that the carbon cost of a building be reduced as much as possible 
during a project, for both financial and climate-conscious motivations. 
Currently, traditional methods of EC analysis, such as Tally for Revit, are 
typically performed in the later stages of design, as this represents a time in 
the process where the most accurate and complete data is available. EC 
analyses completed at this time have the benefit of being accurate and detailed 
but are limited in many ways.  
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“The spreadsheet-based methodology was simply too slow 
to be part of the actual design process… by the time you 
were done, the design process was already over.”  

       (KieranTimberlake, 2014) 
 
The opportunity to change design elements, should the EC analysis reveal 
unfavourable results, becomes increasingly constrained as the project nears 
completion. Carbon-reducing measures are either implemented as a depthless, 
stopgap approach or not at all. Measures that are implemented in these later 
stages of design take considerable time, effort, and cost to deploy. Poor or 
non-existent decision-support tools have influenced the struggle of the 
architecture, engineering, and construction (AEC) industry to reconcile the 
need to be aware of the impacts of embodied carbon while simultaneously 
having the ability to easily change design elements before they are finalized. 
In other words, designers need an integrated process that can keep up with the 
rapidly evolving decisions made in the early stages of design. 
 
When developing an early-stage EC decision-support tool for use in the AEC 
industry, machine learning (ML) can potentially offer an innovative way to 
process and analyse large amounts of data autonomously, a traditional barrier 
for tool development in this area. ML has the unique ability to scale with the 
complexity and speed required for any given project, while existing EC tools 
tend to slow down significantly when faced with larger datasets 
(KeiranTimberlake, 2014) The computational design field has more recently 
being to explore a range of applications for ML in design technology tools, 
and the predictive capabilities ML possesses, while yet to be widely accepted 
and proven in practice, have the potential to be a valuable resource for 
designers (Khean. 2018) Using a database derived from previously completed 
projects, for example, there is the opportunity to predict the EC value for 
early-stage geometry that does not yet contain detailed design information, 
based on the geometry’s spatial and proposed material similarities to existing 
designs. Such a tool would utilize Case-Based Reasoning (CBR), an umbrella 
term that describes the process by which humans - and increasingly, machine 
learning processes – draw from the outcomes of previous experiences to solve 
problems in the present (Richter, 2011). 
 
The methodology and the subsequent CBR tool were developed in 
collaboration with industry partner Bates Smart, with the goal of helping 
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designers and clients make more informed and environmentally conscious 
designs. Bates Smart participated in defining the initial research problem and 
provided feedback throughout the iterative development process. 
 
 

2. Research Aims  

The primary aim of this research project is to develop a parametric Case-Based 
Reasoning tool with the ability to draw from a database of existing floor plans 
and predict the EC value of a novel floor plan, with comparable accuracy to 
existing EC reporting tools.  
 

The following research will aim to assess, a) the accuracy and 
feasibility of CBR for the purpose of predicting EC in early-stage geometry, 
b) the overall speed and performance of the tool, and c) the theoretical benefits 
of such a tool, by discussing the potential effectiveness of a workflow that 
affords designers and increased insight into the impacts of their material and 
construction choices in the early stages of design. 
 
  

3. Research Question 

The following research aims to address the reduction of carbon content in 
early stage design using a new method – Case-Based Reasoning:  
 
How accurate and effective is CBR as a method to develop an Embodied 
Carbon prediction tool for use in early stage design for novel geometries? 
 
 

4. Methodology 

This research adopts the overarching methodology of Action Research (AR), 
while also addressing the growing problem of sustainable design in general. 
AR is an appropriate methodology in this case, as it encourages research to be 
undertaken with a pragmatic goal – ie: to address real-world issues and present 
realistic solutions. Bates Smart, the industry partner for this research project, 
helped to ground the research in a professional and realistic context by 
offering an insight into the feasibility, benefits, drawbacks, and relevance of 
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this research and the subsequent tool in an industry setting. The methodology 
of participatory AR, as described by Baskerville drawing on Lewin, is 
characterized by the involvement of practitioners and industry professionals 
as “both subjects and co-researchers” (Baskerville 1999, Lewin 1946). 
 
AR is described by Lewin as a “change-oriented approach … grounded in an 
acute observation of the effects of change being introduced into a system” 
(Lewin, 1946). It “simultaneously assists in practical problem solving and 
expands scientific knowledge” (Baskerville, 1999). In short, AR aims to enact 
change and generate knowledge about the change. Because of the proactive 
nature of AR methodology, an AR researcher must consider themselves part 
of the study and must account for their own biases, limitations, and motives 
(Azhar et. al. 2009), as well of those of their stakeholders and contributors. 
AR is also highly interpretive – assumptions are drawn from an observation 
of the fundamental change introduced by the observer, and because of this, as 
O’Brien notes, AR first requires a definition of scope or else it has the 
potential to stray too far (or not far enough) from the research itself and into 
‘action’ (O’Brien 1998). 
 

 
 

Figure 1. Action Research ‘spiral’. (Kemmis and McTaggart, 1988, p.44) 
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AR informs the approach to this research project in terms of its iterative 
development and aim of simultaneously expanding knowledge and 
developing pragmatic methods of EC analysis to address sustainable design 
objectives. The research project has been developed in collaboration with 
industry partner Bates Smart, who have contributed to identifying the research 
problem and provided feedback throughout the development of the research 
and CBR tool. 
 

5. Background Research/Literature review 

5.1. PREDICTIVE METHODS 

While CBR is used extensively to solve problems in all aspects of human life, 
the computational design field has only recently begun to adopt it as a form of 
machine learning. The predictive capability it possesses, while yet to be 
widely accepted and proven in practice, has great potential to become a 
valuable ML approach for designers (Khean 2018) However, as Khean et. al. 
observes, “the inherent knowledge gap between the fields of architecture and 
computer science has meant the complexity of machine learning, and thus its 
potential value and applications in the design of the built environment remain 
little understood” (Khean 2018). While many subsets of ML such as genetic 
evolutional algorithms, mass data gathering and manipulation, and Bayesian 
neural networks, among others, have been applied to architectural practice 
before, there are limited examples that focus on developing a predictive model 
and methodology specifically for the early stages of design (Eisenstadt 2019). 
Predictive methods, however, have been applied to generative floor plan 
iterations (Eisenstadt 2019), operational carbon reduction (Victoria & Perera 
2018 (1)), and parametric material choices (Loveridge 2011), providing 
precedent for a subsequent method to be developed. Using traits from these 
existing examples, an ML method can be developed to address the problem of 
embodied carbon prediction in novel geometries in the early stages of design. 

Predictive models in mathematics are typically underpinned by a 
linear regression method, allowing users to visualize how multiple inputs are 
mapped to a desired output (Budig 2020). For instance, Budig’s proposed 
method uses a regression approach to find a mathematical function that maps 
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generic quantitative building parameters (such as Gross Floor Area, perimeter, 
material components, etc.) to different material volumes and spatial types, 
which are later used to visualize embodied carbon per material component in 
addition to the building’s total GWP. In particular, material choice is not often 
considered alongside environmental impact until the later stages of design, 
when it is harder and costlier to change major design features (Bates 2013). 
As Bates also notes, there is a “need for environmental impact data in ‘real 
time’ … at the same pace at which they [designers] make decisions” – ie: not 
after the majority of a building’s design has been finalized (Bates 2013). 

5.2. MATERIAL TYPES, DATA COLLECTION, AND INPUTS 

Material choice has increasingly become more prominent in the hierarchy of 
early stage design decisions as both clients and designers have become more 
aware of sustainability issues and the impact of common building materials 
on the environment (Loveridge 2011) . Buildings that are designed and 
constructed with sustainability in mind from the early stages of design have, 
on average, 40% less GWP than buildings designed and constructed using 
traditional methods (Bhochhibhoya 2017). Additionally, innovation in the 
field of architecture and engineering has produced increasingly more 
sustainable materials, as well as enabling the use of sustainable materials 
where previously it has not been feasible to do so – for example, the use of 
cross-laminated timber as a structural element in large towers (Kimpian 2009). 
 
 In relation to a potential predictive tool, the method chosen to collect and 
collate building material data as an inputs prior to predictive modelling has an 
impact on the reliability of the output, and can influence the users perception 
and awareness of a material’s total contribution to the buildings embodied 
carbon value. It is therefore important that data collection methods remain as 
accessible, reproduceable and understandable to designers as possible. Budig 
et. al. emphasizes this point, and advocates for the use of Industry Foundation 
Classes (IFC) files as an “excellent source of information”, as they contain 
quantitative data on material quantities and buildings shapes that can be 
transcribed into a workable database automatically (Budig 2020). 
In order to further simplify the collection of material data for use in embodied 
carbon analysis, Victoria & Perera (2018(2)) further categorized building 
elements from 28 office buildings by ranking their embodied carbon value in 
order to find “carbon hotspots” – ie: elements whose embodied carbon value 
contributed the most to the building’s total– and it was found that External 
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Walls, Services (lift cores, HVAC, electrical, plumbing, etc.), and Upper 
Floors contributed to the total embodied carbon value at a ratio of 80:36 
(Victoria & Perera, 2018 (2)). Research of this type is fundamentally 
important when considered in conjunction with case-based reasoning and 
predictive models as it provides insight into the required specificity and format 
of potential ML inputs. 
 

5.3. CASE-BASED REASONING AND EMBODIED CARBON 

Case-based reasoning has the potential to be an effective ML method to 
predict values in new geometry when given inputs from existing buildings. 
The benefits of developing a tool to predict EC in the early stages of design 
include: reducing expenses over the course of a project by minimising late 
changes to detailed design drawings (Eisenstadt 2019), as well as providing 
an additional layer of data from which designers and clients can enact 
sustainable and informed material choices earlier in the design process (Budig 
2020). Current research on the developing field of ML in computational 
design suggests that designers appreciate the outcomes of an ML-based tool 
but there exists a gap in understanding when it comes to the “inner workings” 
of such a tool (Khean 2018). In addition, designers require a tool that works 
“in real-time” with their material selection process in order to assist in the 
choice of sustainable materials when it is most feasible to compare different 
materials – in the early design stages (Bates 2013). Considering the findings 
of the studies mentioned in this review, there is both precedent and potential 
to develop such a tool. 
 

6. Case Study 

The following case study aims to resolve the stated research aims through the 
development of a parametric tool that utilizes CBR methods to predict the EC 
content of a novel floor plan geometry. The practical feasibility of this tool in 
its current form can be assessed via one key metric at this stage in the 
development process: accuracy. In this case, accuracy is measured 
comparatively to known EC values. The novel geometry used throughout the 
process has an embodied carbon value that is already known, but not added to 
the database, so as to provide a benchmark from which to ascertain the 
accuracy of the CBR process’s prediction.  
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 The CBR tool was developed primarily in Grasshopper, a visual-
scripting workspace for the CAD tool Rhino. Initial data manipulation and 
setup was conducted in Revit and Excel, while the post-CBR workflow was 
visualized in Adobe InDesign and Photoshop to present the benefits of a 
potential interface UI. 
  
 
6.1. CREATING THE DATABASE 
 
The initial process of developing a database was primarily derived from a 
combination of factors presented by Budig et al. (2020) and Eisenstadt (2019) 
in their research on similar topics. The creation of a database is a crucial first 
step as it plays a large role in defining the format and quantity of the inputs 
for the CBR script. BIM programs offer a valuable source of information from 
which to build the initial database, in the form of IFC files (Industry 
Foundation Classes), which can be broken down into the key data points 
relevant to this tool. In this case, Revit was used to produce the input data as 
it represents a popular industry choice for architects, designers, and engineers, 
as well as being the software of choice for industry partner Bates Smart. 
 
6.1.1 Initial Parameters 
 
The choice was made early in the iterative design process to limit the scope of 
the CBR tool, primarily to remain within the 10-week time frame, but also in 
consideration of potential overlap with previous research. As such, the tool 
will draw data from single floor plans that represent a typical ‘slice’ of 
commercial/office buildings. The goal of the tool is to draw a prediction from 
a data-sparse early-stage model, so the input parameters chosen were done so 
because they are most commonly available in early-stage building models, 
according to initial consultations with the industry partner. 
 
The parameters chosen for inclusion in the database were: 
 

1. Area (m2) 
2. Perimeter (m) 
3. Material volume (m3) 

a. Concrete 
b. Steel 
c. CLT Timber 

4. Spatial Typology Areas (m2) 
a. Working 



10 Z. HEFFERNAN 

b. Circulation 
c. Services 

5. Construction System (categorical.) 
a. Shear Wall only 
b. Column Beam only 
c. Shear Wall and Column Beam 

 
These parameters can be classified into categorical and quantitative 
parameters. While it is possible for CBR algorithms to account for categorical 
conditions by describing them as a mathematical vector (in a process known 
as “One-Hot Encoding” (Friedman 2001) ) , it is not necessary for this tool as 
in this case it constitutes only one parameter – Construction Systems – which 
can be readily tracked alongside the CBR algorithm throughout the script. 
However, it is important to clarify the following quantitative parameters: 
 
 Spatial Typology Areas (Working, Circulation, and Services) 
 
 The spatial typology definition method was adapted from Budig et al. 
(2020), (in which the researchers used circulation/served/serving) as a way to 
identify and quantify the purpose of rooms/areas within a floor plan. It was 
important to visualize the different area-specific carbon embodiment for 
comparison in the final visualization, as well as for comparative analysis by 
the similarity algorithm, as described later. Working spaces are defined as 
being areas which are productive in some way – cubicles, offices, workshops, 
etc., while Circulation spaces are areas which link other areas together or, for 
the sake of simplicity and similarity of material components, serve no purely 
productive purpose (hallways, passages, lounges, break rooms), while 
Services constitute the areas vital to building structure, maintenance, or utility 
(liftcores, stairwells, bathrooms, and storage). 
  
 
6.1.2 Data Extraction from Revit 
 
 For a preliminary study, the data was manually extracted and collated in 
Revit into the following classes: 
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Figure 2. Diagrammatic representation of the key parameters extracted from Revit. 

Bates Smart presented a floor plan from their own project history, with 
embodied carbon data attached (Figure 3). 
 
 

 
Figure 3. The office floor plan provided by Bates Smart, with the relevant data points shown 

in a table. 

The process of extracting these datapoints from Revit was initially planned to 
be automated through Tally, an existing LCA tool that ‘tallies’ material 
volumes as well as the basic building parameters needed for the script. These 
parameters could then be exported in Excel format. However, the prohibitive 
cost of a Tally license lead to the data needing to be transcribed directly from 
Revit to Excel manually (Figure 4). This process was tested first on the Bates 
Smart floor plan, before being refined and applied to the remaining floor plans, 
as discussed below. 
 The target database size was 15 floor plans, to account for variation and 
provide a large enough dataset from which accurate predictions could be 
drawn. Budig et al. (2020) and Eisenstadt (2019) both used dataset with 10-
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20 cases for preliminary studies, so the target number of 15 was appropriate 
for this similar research.  
 
 

 
 

Figure 4. Excel spreadsheet with transcribed data from Revit. 

6.2. DEFINING SPATIAL TYPOLOGIES 
 
To achieve a workflow in which geometry can be directly referenced in the 
subsequent Grasshopper script, the floor plans (which will henceforth be 
called ‘cases’, as the term will be used when discussing the algorithm in the 
following section) needed to be imported into Rhino, the CAD software which 
Grasshopper runs alongside. This process was completed by hand, but in 
future iterations could be completed using image-recognition AT (although 
this is outside the scope of this research). 
 The cases were then assigned into an appropriate layering hierarchy, to 
simplify the referencing process in Grasshopper. 
 

 
Figure 5. The 15 cases scaled to the correct size in Rhino. 
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The cases, once transcribed into Revit, were traced once more to define the 
boundaries for their unique spatial typologies. Working, Circulation, and 
Service areas were traced by hand to define these boundaries, and then 
assigned as a sublayer for their parent case, as described below: 

 

 
Figure 6. Spatial Typologies defined and assigned into parent/child layers. 

6.3. DEFINING INPUT PARAMETERS  
 
6.3.1 Referencing geometry and parameters 
 
At this point in the process, the ‘case’ database had been set up in two formats: 
geometry and parameters, in Rhino and Excel, respectively. A method was 
needed to collate and combine geometric and numerical data from both 
sources for later use by the CBR algorithm (Figure 7). A Grasshopper plugin, 
called Bumblebee, was used to import and decode the Excel data into a 
readable format for the CBR script. The Rhino geometry was ‘live-referenced’ 
using a plugin called Human and a component called Dynamic Geometry 
Pipeline, which extracts geometric data from the predefined Rhino layers 
discussed in the previous section.  
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Figure 7. Both the geometry and parameters were referenced for use in the Grasshopper-

based CBR script. 

 
6.3.2 Defining the CBR inputs 
 
Case-Based Reasoning is unique in that its complexity can be defined and 
appropriately scaled before writing the algorithm (Poole 2018). If the ‘target’ 
value is a simple numerical prediction, and the number of ‘cases’ is small, the 
most appropriate regression method is the ‘k-nearest neighbors’ method, for 
some variable ‘k’ (Poole 2018). It is important to note that this method is only 
applicable when all the input cases have a ‘k’ value in the same format as the 
anticipated ‘k’ outcome.  
 
The target case geometry was also defined in this stage of the process. One of 
the Bates Smart floor plans was used, as the EC content of it was precisely 
known. This value was then removed from the dataset, but noted externally, 
for reference in the final stage to check the accuracy of the CBR method. 
 
 
6.3.2 Global Warming Potential as an output of the CBR Method 
 
In this case, the anticipated input and outcome are the EC content, measured 
in KgCO2 eq per m2 (kilograms of carbon dioxide equivalent per metre 
squared).  
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 CO2 eq is a metric used for describing the impact of a ‘bundle’ of materials 
in a single unit. It signifies that 1m2 of CO2 that would have the same GWP 
(Global Warming Potential) as x m2 of the ‘bundle’ of materials. For example, 
CO2 has a GWP of 1, while structural concrete has an average GWP of 30.9 
(Bhochhibhoya, 2017). Heavily simplified, but appropriate for the purposes 
of comparison, this means that structural concrete has 30.9x more GWP than 
the same amount of CO2 (usually measured with a duration of 100 years). 
 

Table 1. Comparison of KgCO2 eq per m2 of the construction types and materials used in this 
CBR script, data from Hammond et al (2011), and Budig et al. (2020) . 

Material Concrete (UK 
avg.) 

Steel (UK 
avg.) 

Timber (UK 
avg.) 

KgCO2eq per kg2 860.0 146.0 41.0 
Construction System  Column/Beam Shear Wall Column/Beam 

and Shear 
Wall 

KgCO2eq per m2 12.96 9.17 30.90 
 

 
6.4. CASE-BASED REASONING ALGORITHM  
 
6.4.1 CBR Method - Retrieve 
 

 

 

 

 

 

 

Figure 8. Diagrammatic representation of the CBR algorithm. 
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Reduced to a fundamental workflow, CBR follows the following ‘4 R’s 
cycle’: 
 
 Retrieve: Given a new target case, retrieve similar cases from the dataset. 
 Reuse: Adapt the retrieved case to fit the target. 
 Revise: Evaluate the solution and revise it based on how well it works. 
 Retain: Decide whether to retain this new case in the dataset. 
 
The final ‘R’ – Retain – is not applicable for the scope of this preliminary 
research but would be useful in an integrated workflow in which ‘solved’ 
cases are recycled for future use. 
 
The CBR method depends on a target parameter (Xi) being assigned a ‘weight’ 
(wi), and a distance metric being applied to measure the ‘closeness’ of each 
set of two examples (the ‘target’ and each ‘case’, consecutively). The 
closeness according to the weighted value of the target parameter can be 
measured using a variation of the Euclidean Distance formula (1). 
   
 

d (e1, e2) = �∑  𝑤𝑤 ∗ �𝑋𝑋𝑋𝑋(𝑒𝑒1) − 𝑋𝑋𝑋𝑋 (𝑒𝑒2)�^2𝑖𝑖                        (1) 

 
 
The formula can be applied directly into the equation component in 
Grasshopper, and the input variables can be defined and linked to the previous 
Excel output. Alternatively, grasshopper has a native component that 
replicates the Euclidean Distance formula, called the Similarity component 
(Figure 9). Two cases and a weighting value were the inputs, while the 
Euclidean distance, or the ‘similarity’ was the output. This was then used to 
check the similarity of each case, and by process of elimination, find the most 
similar case to the target.  
 The target parameter in this case was the ratio of GFA (m2) to each Spatial 
Typology (m2), ensuring that the chosen case has the highest likelihood of 
possessing similar material composition to the target, without knowing 
exactly what those compositions are, due to the nature of working with early 
stage geometry. This essentially comprises the first ‘R’ of the cycle – Retrieve. 
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Figure 9. The ‘Similarity’ Component, which isolates the most similar case to the target, and 

a comparison of a weighting of 1 vs 1.5 vs 3. 

6.4.2 CBR Method – Reuse 
 
The next step in the CBR method was to adapt the similarity-tested retrieved 
case to the parameters of the target case. Each parameter was multiplied by a 
similarity ratio (‘case’:’target’) in order to estimate the material volumes and 
subsequent EC content of the chosen case.  
 

 
Figure 10. Adapted parameters for the target case. 
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6.4.3 CBR Method – Revise 
 
The approximate accuracy of the CBR method was measured by comparing 
the output of the script to the known EC value of the target case (Figure 10.)  
 In summary, the CBR process used a database of 15 cases to evaluate the 
most similar geometry for a target case, based of a variety of early-stage 
parameters – area, perimeter, basic material composition, and spatial 
typologies – and returned a result with an error percentage of ~21%.  
 To determine the definitive accuracy and precision, the same process 
would need to be repeated on a wider range of input floor plans, which was 
not feasible given the limited amount of floor plans available during the time-
frame of the research. 
 

7. Discussion 

The research has so far developed a comparison algorithm and a spatial area 
type visualization which assists with early stage design decision-making, 
specifically when comparing the impact of embodied carbon in construction 
types and materials. Drawing from a small database of existing office and 
commercial floorplans, the research and subsequent algorithm has 
successfully proven that Case-Based Reasoning is an appropriate application 
of machine learning for gaining autonomous and human-readable insights 
from databases of simple floor plan geometry. The algorithm developed 
throughout the 10-week time frame reached the stated aim of sorting a 
database of 'case' geometry by compatibility to a undefined input geometry - 
the 'target' - in order to predict, or more accurately, estimate, the embodied 
carbon content of the target based on generic design parameters similar to 
both. This success has potential positive implications for future work on this 
topic, and the groundwork has been laid out for integration into a real-life 
workflow. 
 
 While the framework, workflow and overall theory behind the 
prediction tool proved to be sound, the tool itself in its current form lacks the 
refinement needed to integrate it into the workflow of a contemporary 
designer. In the initial weeks of research discussion, the tool was proposed as 
a 'back-end' for a UI interface which would allow non-designers to quickly 
compare construction and material iterations for a project and clearly see 
which would be the most ideal to implement from an embodied carbon 
standpoint. In reality, this approach was tabled once the complexity of 
developing a CBR script from scratch was apparent. Instead, the research 
focus was shifted to exploring the theory and potential utility of CBR as a 
predictive tool, with a script being developed as a proof-of-concept to 
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compliment the research. Cost and time were the two largest limiting factors, 
both of which inhibited the ability to fully implement machine learning into 
the script. A license for the Tally plugin for Revit proved to be outside of the 
scope and budget for this research, and its application in the translation of 
material data directly from Revit would have, by the nature of its inherent 
integration into the popular CAD software, been useful in the construction of 
the case database. In addition, while CBR proved to be an appropriate method 
for deriving comparative similarity from an external database, a longer 
timeframe for research would have allowed for the testing and comparison of 
more machine learning methods. In particular, a Bayesian Neural Network 
(BNN) was applied to a similar embodied carbon prediction task by Budig, et 
al. (2020), and as such a comparison between the effectiveness and accuracy 
of the two methods would have been valuable as a benchmark. 
 
 Contemporary research has been, to some extent, successful in 
showcasing the ability for machine learning processes to have a significant 
impact on the decisions of designers in the early stages of design, and this 
research paper endeavored to build upon this further. The key difference 
between existing research and the research undertaken in this paper is the level 
of complexity needed to achieve, in theory, similar results. The titular BNN 
used in Budig et al.'s research suffered from over-complexity when 'combing' 
through the initial database of cases, which was time and resource intensive 
(Budig et al. 2020). Case-Based Reasoning, being explicitly goal-oriented as 
opposed to probability-oriented, is more suited to smaller, well-defined 
datasets as it has the advantage of being set up to find explicit input parameters 
and where in the dataset to find them. Of course, as the dataset in this research 
was small in sample size, CBR has a clearer advantage. For larger datasets, 
which are unavoidable should the process be applied to the AEC industry as a 
whole in the future, the efficacy of CBR approaches will likely see 
diminishing returns. 
 
 While this research has elaborated and expanded upon existing early-
stage prediction methods, it falls short of developing a human-accessible tool 
that could be put to use in a real-life workflow. With either more time and 
resources, creating a 'front-end' for the CBR script would be both realistic and 
feasible. Such an interface would not only reformat the EC results in a way 
that is accessible to anyone, but could also interact with the script as it runs in 
a background process, allowing users to change inputs in order to rapidly 
visualize the impacts of different construction systems or material choices in 
real-time. The CBR algorithm itself could also be updated to search for 
different goal parameters (ie: cost, or a specific material), or even a 
combination of parameters (ie: searching for the most similar design that both 
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reduces embodied carbon but doesn't require a construction system to be 
changed, or a design that reduces embodied carbon but doesn't impact the 
overall volume of materials, for example). 

8. Conclusion 

The CBR method presents a novel and potentially viable method for 
estimating EC content in early-stage geometry without detailed design 
information available. Contemporary research has shown that designers and 
stakeholders studying LCA methods of EC estimation require a parametric 
tool which can rapidly estimate EC content from the early stages of the design 
process and is able to quickly update and work alongside the designer’s 
workflow, rather than impeding it. By using a simplified linear regression 
workflow, the process was able to quickly provide an estimated EC content 
for a test geometry to within ~22% of its actual value. While this particular 
process is not yet accurate or expansive enough for integration into real-life 
workflows, this study has shown that there is significant potential for further 
investigation to be conducted on the integration of ML methods and tools, to 
be used in parallel with conventional CAD software. The study also addresses 
the trending goal of designers to building sustainably and develop sustainable 
knowledge and forethought, a key issue that is becoming increasingly 
prevalent in modern practice.  
The research explored in this paper lays the theoretical and practical 
groundwork for future developments that have the potential to fundamentally 
reshape the process of sustainable design thinking, and help both designers 
and stakeholders be aware of informed and sustainable choices before they 
become irreversible. 
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