Keeping up with the Code: Tracing Decision Making History in Architectural Scripts

A research project by:

William Hamilton

In partnership with...

What are the issues to address?

Collecting data is important

Decisions are fundamental to architecture

Coding is confusing

What was created

Grasshopper workflow

♦ What is an architectural script?

♦ The case study: A stadium bowl script

Sightlines

Field and risers

Egress and seating

⋄ Relational databases: Python classes

⋄ Making the database accessible

pythonanywhere

Django administration WELCOME, WILHAM7. VIEW SITE / CHANGE PASSWORD / LOG OUT Huginn administration **Familys** Change **Function obs** Change Parameter map through objects 🥓 Change **Parameter objects**

♦ Storing data on Huginn

Required Inputs	What it is?
ID	Internal unique Huginn number
Parameter created at	What time was the object made
Parameter ID	Assigned name for the object
Parent ID	Assigned name for a group of similar objects
Parameter value	The archiJSON that describes the geometry in text format
Parameter type	What type of text or geometry is the object?
Data text	Notes and Decision Rationale documentation

⋄ Sending sample data from Grasshopper

```
"parameterIdentity":
    "myobject5",
    "parameterType": "Int",
        "parameterVal": 20,
    "parentIdentity": "parent3",
        "data_text": "New Text"
        }

"object_from": "myobject1",
        "object_to": "myobject2",
        "function": "efg_function2",
        "data_text": "Test text"
        }
```


GH Python

♦ Sending geometry from Grasshopper

Simplification of the Workflow

All Huginn inputs

Required Inputs	What it is?
ID	Internal unique Huginn number
Parameter created at	What time was the object made
Parameter ID	Assigned name for the object
Parent ID	Assigned name for a group of similar objects
Parameter value	The geoJSONthat describes the geometry in text format
Parameter type	What type of text or geometry is the object?
Data text	Notes and Decision Making History documentation

Inputs in Grasshopper

Mapping Objects

What decision making information can be communicated with Huginn

Human made:

Logic system:

Structure of the Grasshopper script

Structure of the Grasshopper script (SIMPLIFIED)

Results from Huginn

Centrelines: 2x Lines Location of site: Defined by client

Grid size: 15.3 Defined by the engineer due to column layout

Field_dimensions: 110 x 75 FIFA international requirements
Field: Untrimmed surface Shape defined by field type

Barrier_distance: 10 Barrier distance from field of play was kept at a minimum to reduce distance of spectators from the game but compromising room

First_plat: 43x Brep for services in this area

Lower bowl riser section: Closed Barrier on the first riser is 400mm to avoid vision obstruction

Polyline A C-Value of 0.085 was used for plat setout in lower bowl to balance reduced cost and size with quality sightlines

Suite_riser_section: Closed Polyline A C-Value of 0.1 was used for plat setout to give suite seats a premium viewing experience

Suite bowl shape: 43x Brep Pre-cast risers used to reduce construction costs

Aisle_width: 125 Set to be the minimum size still compliant with egress safety regulations to maximise space for seating

Suite_stairs: (1) 863x Brep If plat step-up >= 300mm, use 2 steps

ID	Parameter Value	Decision Making History:
Centrelines:	2x Lines	Location of site: Defined by client
Grid size:	15.3	Defined by the engineer due to column layout
Field type:	Soccer field	Defined by client
Field dimensions:	110 × 75	FIFA international requirements
Field:	Untrimmed surface	Shape defined by field type
Barrier distance:	10	Barrier distance from field of play was kept at a minimum to reduce distance of spectators from the game but compromising room for services in this area
First plat:	43x Brep	Barrier on the first riser is 400mm to avoid vision obstruction
Lower bowl riser section:	Closed Polyline	A C-Value of 0.085 was used for plat setout in lower bowl to balance reduced cost and size with quality sightlines
Suite riser section:	Closed Polyline	A C-Value of 0.1 was used for plat setout to give suite seats a premium viewing experience
Suite bowl shape:	43x Brep	Pre-cast risers used to reduce construction costs
Aisle width:	125	Set to be the minimum size still compliant with egress safety regulations to maximise space for seating
Suite stairs:	(I) 863x Brep	If plat step-up >= 300mm, use 2 steps

Limitations to my research

1. It's very hard to synthesise decision making into succinct text

PlatSectionLowerBowl

A C-Value of 0.085 was used for plat setout in lower bowl to balance reduced cost and size with quality sightlines

Limitations to my research

2. The current state of the workflow is time consuming and requires a change in approach to coding practice

1. Developing an interface for the data

2. More user friendly

3. User testing of usefulness in design practice

