GRADUATION PROJECT

Substance without form(work): Exploring alternatives for constructing form-finding concrete formwork

Nick Lucchese

In partnership with

THEORY

AREA OF EXPLORATION

Developing a contemporary method for the construction of formwork for complex concrete geometry

THEORY

PRECEDENTS

- **1. Philippe Block** Cable-net and fabric formworks for concrete shells
- **2. Jo Nagasaka -** Casting concrete in a fabric bag
- **3. Neal Aronowitz -** Exploring applications of Concrete Canvas
- **4. ETH Zurich** Thin-shell concrete roof structure

THEORY

This research will challenge this method of pre-tensioning the fabric into the desired shape. It will instead use a form-finding process.

PRODUCT_

FINAL MODELS

PROCESS Digital Model Physical Model 3D Scanning

MATERIAL DISCUSSION

Mechanical properties are essential when comparing fabrics suitable for formwork.

- Youngs Modulus
- Thread Count
- Weave Type

DIGITAL MODEL

Parametrically designed to assist with an accurate deformation of fabric in a digital scape.

PHYSICAL MODELS

Explores various materials and applications in an attempt to create a solution for current formwork issues

PROCESS₊

PHYSICAL MODELS

- WAX

Preliminary models were poured from wax to inform later iterations.

- Verified material concerns
 - Material constraints

PHYSICAL MODELS - CONCRETE .1

These scale concrete models explore several areas that will later inform future iterations

- Method of Application
- Material properties

PROCESS₊

PHYSICAL MODELS
- CONCRETE .2

Tested another application, spraying cement onto fabric

PHYSICAL MODELS
- CONCRETE .3

Fabrics with more elastic properties were tested to extend the form-finding result.

PHYSICAL MODELS - CONCRETE .4

Utilising the fabric from iteration 3, an attempt to achieve an organic, formfound geometry based from the digital model, was explored

PHYSICAL MODELS - CONCRETE .5

Process from iteration .4 was refined to minimise interference in form-finding process to ensure most structurally sound result.

3D SCANNING - LIDAR (ZEBREVO)

Lidar was the first form of 3D scanning tested to compare the digital and physical models.

* ZEB REVO 3D scanner

3D SCANNING - PHOTOGRAMMETRY

Preferred method of scanning for the results due to scale and size of objects.

3D SCANNING - SPOT CHECK

Both methods were bench marked against direct measurements taken from the physical model as a form of validation.

OUTCOMES Method Analysis Data Final Models

METHOD ANALYSIS

Several methods were explored however, the most accurate for this process was a confidence interval.

MODEL 1

Outlined are areas of concern that were not within the designated tolerance.

MODEL 2

Outlined are areas of concern that were not within the designated tolerance.

MODEL 3

Outlined are areas of concern that were not within the designated tolerance.

OUTCOMES_

DATA

Data extrapolated from the Confidence Interval procedure.

Tolerance for (planar) cross-sectional dimensions

(+) 10mm: (-) 5mm

CONFIDENCE INTERVAL	MODEL 1 (%)	MODEL 2 (%)	MODEL 3 (%)
5mm	40	43	39
10mm	90	92	82
15mm	100	100	93
20mm	100	100	98

WHAT DOES THIS MEAN?

The data is a form of validation for this methods reliability.

PRODUCT_

FINAL MODELS

FUTURE |

MATERIAL RESEARCH

Exploring the impact of different weave counts, thread patterns and other fabrics.

FUTURE |

STRUCTURAL REINFORCEMENT

Embedding fabric within the mixture during pouring process to reinforce the concrete instead of steel bars.

GRADUATION PROJECT

As. 3: Design Documentation

Substance without form(work): Exploring alternatives for constructing form-finding concrete formwork