

Alexander Kira, Łazienka Alexander Kira, The Bathroom

Analiza pozycji ludzkiego ciała na toalecie kucanej. Analysis of the position of the human body on

the semi-squat toilet.

Widok z góry: niezbędne wymiary i odstępy dla toalety kucanej przy wysokości 255 mm (10 cali). Plan view of necessary dimensions and clearances for a semi-squat water closet at 255 mm (10 inch) height.

Activities Which Took the Most Time for Male and Female Respondents at the Airport Restrooms

ctivities Urinate	Males n % (N = 34)		Females n $\frac{\pi}{2}$ (N = 40)	
	19	55.9	16	40.0
Wash hands	4	11.8	6	15.0
Check appearance	3	8.8	2	5.0
Straighten tie	2	5.9	N A	NA
Comb/brush hair	1	2.9	2	5.0
Change clothes	1	2.9	1	2.5
Deficate	1	2.9	0	0.0
Straighten clothes	0	0.0	3	7.5
Wash face	0	0.0	1	2.5
Wait on other person	0	0.0	1	2.5
Assist child/children	0	0.0	ī	2.5
Apply make-up	NA	N A	ī	2.5
Other	3	8.8	6	15.0
Total	34	100.0	40	100.0

Male AM PM H: Y N Time:_____

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Public Restroom Study

Did you have to wait in line to use the restroom? (check one)YESNO
If yes, please estimate the time you waited in line $(\mbox{check one})$
More than 5 minutes
1 to 5 minutes
Less than 1 minute
Please check $\underline{a11}$ of the activities you performed while you were in the restroom.
Wash hands Put in/take out contact
Check appearance Clean glasses
Comb/brush hair Take medicine
Straighten clothes Smoke
Straighten tie Talk
Change clothes Wait on other person
Wash face Change diaper
Brush/floss teeth Assist child/children
Urinate Other (please specify,
Deficate (bowel Other (please specify,)
Which activity do you believe took the most time?
Did you use (place a check by your answer): the regular stall? the handicapped stall? TES NO NO the urinal? YES NO
What did you like most about the restroom?
What do you think would have improved the restroom?
Year of birth:
Thank you for your time and cooperation.

1. Reid, E., and Novak, P.. 1975. "Personal Space: An Unobtrusive Measures Study."

Bulletin of the Psychonomic Society. 5 (3): 265-266

(Undergrad thesis, peering through a crack)

- Rawls, S. K. 1988. "Restroom Usage in Selected Public Buildings and Facilities:
 A Comparison of Females and Males."
 https://vtechworks.lib.vt.edu/handle/10919/53598.

 (Inside the bathroom where people could see him counting)
- Personal communication from Kira (1994)
 (Unpublished)

What degree of fidelity can be reached when using a combination of sensor technology and machine learning for a privacy-preserving data gathering system to measure human behaviour in buildings?

More specifically, how can workplace sanitary facilities usage be monitored using such a system?

What behaviours can be detected in bathrooms?

More specifically, how can workplace sanitary facilities usage be monitored using such a system?


```
5,31.5,31.0,26.5,26.0,27.25,31.5,28.75,28.5,32.0,
5,23.75,22.75,24.5,26.5,31.25,30.5,29.0,25.25,23.
                                                                    # Return the celsius result from the high and low byte data
5,28.25,31.5,29.25,26.0,26.5,28.75,22.75,29.5,24.5
5,25.0,30.75,30.75,31.75,28.75,31.0,30.5,31.75,27
                                                                    # Find the relevant 12bit signed data
binaryString = ("0000" + "\{0:b\}".format(high))[-4:] + (
                                                                                                                                                                         5,27.25,29.75,23.25,24.0,22.75,26.0,23.0,25.25,28
5,27.0,26.25,30.75,28.5,26.5,25.75,26.0,24.0,25.75
                                                                         "00000000" + "{0:b}".format(low))[-8:]
,25.5,27.75,32.25,27.5,23.25,25.25,23.5,27.5,30.0
#print(("00000000" + "{0:b}".format(low))[-8:] + ("777{0:b}".format(low))[-8:], end="+,32.5,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.25,28.0,29.75,26.75,24.25,22.5,28.0,29.75,26.75,24.25,22.5,28.0,29.75,26.75,24.25,25.25,28.0,29.75,26.75,24.25,25.25,28.0,29.75,26.75,26.25,26.25,28.0,29.75,26.25,28.0,29.75,26.25,28.0,29.75,26.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,28.0,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.25,29.
5,28.5,31.75,23.75,27.5,25.75,27.0,22.75,32.25,26
# Determining if the value is negative and setting the signed bit to -1 or 1 respecti<sup>5</sup>,22.5,24.25,26.5,30.0,28.75,23.75,25.25,24.75,27
,26.0,22.5,23.25,32.25,31.75,26.5,23.0,30.5,24.0,2
                                                                    signedBit = -((int(binaryString[0]) * 2) - 1)
,28.0,28.5,23.75,26.75,31.75,25.25,28.25,25.75,32
,31.5,27.5,23.5,27.0,32.25,27.25,23.0,24.25,29.0,2
                                                                    # Convert the binary string to a number, multiplying by the signed bit
5,30.5,22.5,32.0,30.75,28.5,31.75,31.0,32.5,30.0,
                                                                    value = int(binaryString[1:], 2) * signedBit
,31.5,32.0,32.25,28.5,28.5,30.75,23.75,29.25,31.0
,32.25,22.5,29.25,31.0,28.25,28.25,22.5,24.0,26.7
                                                                    # Return the value in celsius (data has a granularity of 0.25 degrees celsius)
5,28.0,30.25,30.25,27.25,31.5,29.25,26.0,28.0,26.0
                                                                    return value / 4
,28.25,28.25,30.75,31.75,29.0,26.75,28.25,22.5,23
5,30.5,29.5,29.5,27.0,27.25,22.5,23.25,23.75,30.7
,28.75,32.5,26.5,30.0,30.25,29.0,29.5,32.5,24.0,28
                                                                  ef updateStateFile(text):
5,29.25,23.25,26.0,24.0,26.25,23.5,24.25,31.5,32.0
                                                                    with open(testFileName, 'w+') as f:
,30.5,23.0,30.75,31.25,30.0,26.0,32.0,29.5,32.5,28
                                                                         f.write(str(time.time()) + " " + str(text))
,25.25,32.5,32.25,22.5,22.5,29.0,24.75,30.5,24.25
,24.5,31.0,25.75,29.25,29.5,22.5,25.5,32.0,26.25,
,28.25,23.0,28.75,31.75,30.0,28.25,23.25,24.5,27.2
return [24, 25, 26, 23.5, 24.25, 29.75, 26, 23.5, 24, 25, 26, 23.5, 24.25, 29.75, 26, ,24.0,24.25,28.25,23.25,29.0,28.5,25.5,31.0,22.5,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.25,20.
5,23.25,28.0,27.5,32.0,29.0,28.5,32.5,31.25,31.5,
5,23.5,24.75,28.75,25.75,22.5,31.0,28.75,30.75,32
,32.5,31.25,24.75,32.0,25.0,27.25,30.5,23.5,27.25
5,31.75,32.5,25.0,26.0,23.25,29.0,29.5,27.75,26.2
5,23.5,31.25,23.75,28.0,30.0,24.25,24.25,24.25,28
                                                                    Collect and organise temperature values at a given time.
5,32.0,26.5,25.75,30.0,28.75,25.25,28.0,29.0,23.7
                                                                    Return a list of length 64 of the current temperatures.
,24.75,27.25,28.75,25.25,26.25,26.25,24.25,24.5,22
5,32.5,25.25,27.75,25.25,22.75,31.25,31.0,29.25,22
                                                                    # Initialising the I2C stuff
5,25.25,26.25,23.25,29.75,24.5,25.75,29.25,30.75,
bus = smbus.SMBus(1)
                                                                                                                                                                         ,23.5,27.5,31.75,27.5,29.75,30.5,31.75,22.75,24.5
address = 0x69
```

```
32.25,31.5,31.0,26.5,26.0,27.25,31.5,28.75,28.5,32.0,
                                                                frameList.extend(subList)
30.75,23.75,22.75,24.5,26.5,31.25,30.5,29.0,25.25,23.5
26.75,28.25,31.5,29.25,26.0,26.5,28.75,22.75,29.5,24.5
                                                            # Turning the items into strings
                                                            frameList = [str(x) for x in frameList]
27.25,25.0,30.75,30.75,31.75,28.75,31.0,30.5,31.75,27
26.75,27.25,29.75,23.25,24.0,22.75,26.0,23.0,25.25,28.
29.75,27.0,26.25,30.75,28.5,26.5,25.75,26.0,24.0,25.75
                                                            # Returning everything, the data as a CSV string
                                                            return frameData["state"], frameList
30.0,25.5,27.75,32.25,27.5,23.25,25.25,23.5,27.5,30.0
30.5,32.5,25.25,28.0,29.75,26.75,24.25,22.5,31.75,25.2
22.75,28.5,31.75,23.75,27.5,25.75,27.0,22.75,32.25,26
                                                        def changeDomain(value, startDomain, endDomain):
31.25,22.5,24.25,26.5,30.0,28.75,23.75,25.25,24.75,27.
                                                            """Change a value from its position in an initial domain to its position relative
25.0,26.0,22.5,23.25,32.25,31.75,26.5,23.0,30.5,24.0,2
28.0,28.0,28.5,23.75,26.75,31.75,25.25,28.25,25.75,32
                                                                                                                                              0
                                                            value should be a float
30.5,31.5,27.5,23.5,27.0,32.25,27.25,23.0,24.25,29.0,2
                                                            startDomain should be a [float, float]
26.75,30.5,22.5,32.0,30.75,28.5,31.75,31.0,32.5,30.0,
                                                                                                                                              Η.
                                                                                                                                                                                                - 26
                                                            endDomain should be a [float, float]
25.5,31.5,32.0,32.25,28.5,28.5,30.75,23.75,29.25,31.0
28.5,32.25,22.5,29.25,31.0,28.25,28.25,22.5,24.0,26.7
                                                                                                                                              2
                                                            # Getting a percentage of where it is relative to the first domain
24.75,28.0,30.25,30.25,27.25,31.5,29.25,26.0,28.0,26.6
                                                                                                                                                                                                - 25
                                                            valuePct = (value - startDomain[0]) / (startDomain[1] - startDomain[0])
                                                                                                                                              m
30.0,28.25,28.25,30.75,31.75,29.0,26.75,28.25,22.5,23.
27.25,30.5,29.5,29.5,27.0,27.25,22.5,23.25,23.75,30.7!
                                                            # Scaling up to the end domain, and adding the shift
                                                                                                                                              4
                                                                                                                                                                                                - 24
32.0,28.75,32.5,26.5,30.0,30.25,29.0,29.5,32.5,24.0,28
                                                            valueFinal = valuePct * (endDomain[1] - endDomain[0]) + endDomain[0]
28.25,29.25,23.25,26.0,24.0,26.25,23.5,24.25,31.5,32.6
                                                                                                                                              S
24.5,30.5,23.0,30.75,31.25,30.0,26.0,32.0,29.5,32.5,28
                                                            return valueFinal
                                                                                                                                                                                                - 23
                                                                                                                                              9
24.5,25.25,32.5,32.25,22.5,22.5,29.0,24.75,30.5,24.25
30.5,24.5,31.0,25.75,29.25,29.5,22.5,25.5,32.0,26.25,2
24.5,28.25,23.0,28.75,31.75,30.0,28.25,23.25,24.5,27.7
                                                        def tempToHexColor(temp):
31.5,24.0,24.25,28.25,23.25,29.0,28.5,25.5,31.0,22.5,2
                                                            """Turn a float temp to a str hex rgb color that represents its temperature
30.25,23.25,28.0,27.5,32.0,29.0,28.5,32.5,31.25,31.5,
27.75,23.5,24.75,28.75,25.75,22.5,31.0,28.75,30.75,32.
                                                            Input temps will likely be in the range 15-40 (that's being generous)
28.0,32.5,31.25,24.75,32.0,25.0,27.25,30.5,23.5,27.25
                                                            Some example outputs of the same format: 'rgb(255, 70, 0)', 'rgb(11, 172, 230)', '
26.25,31.75,32.5,25.0,26.0,23.25,29.0,29.5,27.75,26.2
26.25,23.5,31.25,23.75,28.0,30.0,24.25,24.25,24.25,28.
                                                            # Setting the (somewhat arbitrary) temperature range
23.75,32.0,26.5,25.75,30.0,28.75,25.25,28.0,29.0,23.75
                                                            tempRange = [15, 40]
32.0,24.75,27.25,28.75,25.25,26.25,26.25,24.25,24.5,27
28.25,32.5,25.25,27.75,25.25,22.75,31.25,31.0,29.25,27
                                                            # Keeping the temp within the acceptable range
29.25,25.25,26.25,23.25,29.75,24.5,25.75,29.25,30.75,7
                                                            if temp < tempRange[0]:</pre>
31.5,23.5,27.5,31.75,27.5,29.75,30.5,31.75,22.75,24.5
                                                                temp = tempRange[0]
```


Behaviours:

["sitting", "browsing_phone", "take_phone_call", "standing", "straighten_clothes", "comb_brush_hair", "leave"]

```
Epoch 19/40
91/91 - 28s - loss: 0.0141 - acc: 0.9639 - val loss: 0.0130 - val acc: 0.9609
Epoch 20/40
91/91 - 28s - loss: 0.0120 - acc: 0.9705 - val loss: 0.0162 - val acc: 0.9492
Epoch 21/40
91/91 - 29s - loss: 0.0105 - acc: 0.9753 - val loss: 0.0131 - val acc: 0.9570
Epoch 22/40
91/91 - 26s - loss: 0.0098 - acc: 0.9773 - val loss: 0.0109 - val acc: 0.9688
Epoch 23/40
91/91 - 27s - loss: 0.0089 - acc: 0.9787 - val loss: 0.0099 - val acc: 0.9688
Epoch 24/40
91/91 - 29s - loss: 0.0070 - acc: 0.9863 - val loss: 0.0095 - val acc: 0.9766
Epoch 25/40
91/91 - 30s - loss: 0.0065 - acc: 0.9894 - val_loss: 0.0073 - val_acc: 0.9844
Epoch 26/40
91/91 - 29s - loss: 0.0061 - acc: 0.9890 - val loss: 0.0149 - val acc: 0.9629
Epoch 27/40
91/91 - 29s - loss: 0.0053 - acc: 0.9924 - val loss: 0.0061 - val acc: 0.9844
Epoch 28/40
91/91 - 25s - loss: 0.0048 - acc: 0.9924 - val loss: 0.0083 - val acc: 0.9824
Epoch 29/40
91/91 - 30s - loss: 0.0040 - acc: 0.9952 - val loss: 0.0059 - val acc: 0.9941
Epoch 30/40
91/91 - 29s - loss: 0.0033 - acc: 0.9962 - val loss: 0.0044 - val acc: 0.9941
Epoch 31/40
91/91 - 27s - loss: 0.0027 - acc: 0.9983 - val loss: 0.0041 - val acc: 0.9980
Epoch 32/40
91/91 - 27s - loss: 0.0023 - acc: 0.9990 - val loss: 0.0037 - val acc: 0.9961
Epoch 33/40
91/91 - 31s - loss: 0.0019 - acc: 0.9993 - val loss: 0.0038 - val acc: 0.9961
Epoch 34/40
91/91 - 28s - loss: 0.0019 - acc: 0.9986 - val_loss: 0.0038 - val_acc: 0.9941
Epoch 35/40
91/91 - 29s - loss: 0.0015 - acc: 0.9993 - val loss: 0.0032 - val acc: 0.9961
Epoch 36/40
91/91 - 24s - loss: 0.0014 - acc: 0.9993 - val loss: 0.0030 - val acc: 0.9961
Epoch 37/40
91/91 - 26s - loss: 0.0012 - acc: 0.9993 - val loss: 0.0028 - val acc: 0.9980
Epoch 38/40
91/91 - 26s - loss: 0.0013 - acc: 0.9993 - val loss: 0.0029 - val acc: 0.9961
Epoch 39/40
91/91 - 26s - loss: 0.0011 - acc: 0.9993 - val_loss: 0.0028 - val_acc: 0.9980
Epoch 40/40
91/91 - 29s - loss: 0.0017 - acc: 0.9990 - val loss: 0.0030 - val acc: 0.9980
```


Behaviours:

['adjust_jewelry_scarf', 'breast_feeding', 'change_clothes', 'change_diaper', 'change_pad_tampon', 'clean_glasses', 'cover_seat_with_toilet_paper', 'deal_drugs', 'defecate', 'drink_alcohol', 'eat_food', 'exercise', 'have_solace', 'hide', 'nap', 'put_in_take_out_contacts', 'read', 'smoke', 'spy', 'squat_on_toilet', 'take_medicine', 'take_phone_call', 'talk', 'urinate', 'use_drugs', 'vandalise', 'write_notes']

SVM (Support Vector Machine)

Confusion Matrix

Model: SVM (Support Vector Machine **Kernel:** RBF (Radial Basis Function)

Gamma: 0.001

adjust_jewelry_scarf
breast_feeding
change_clothes
change_diaper
change_pad_tampon
dean_glasses
cover_seat_with_toilet_paper
deal_drugs
defecate drink_alcohol eat_food exercise have_solace hide nap put in take out contacts smoke spy squat_on_toilet take_medicine take_phone_call talk urinate use drugs vandalise write_notes

Confusion Matrix

adjust jewelry_scarf
breast feeding
change_clothes
change diaper
change_pad_tampon
dean_glasses
cover_seat_with_toilet_paper
deal_drugs
defecate drink_alcohol eat_food exercise have_solace hide put in take out contacts smoke squat_on_toilet take_medicine take_phone_call talk urinate use drugs vandalise

Model: SVM (Support Vector Machine **Kernel:** RBF (Radial Basis Function)

Gamma: 0.001

Model: SVM (Support Vector Machine

Kernel: RBF (Radial Basis Function)

Gamma: 0.001

adjust_jewelry_scarf
breast_feeding
change_clothes
change_diaper
change_pad_tampon
dean_glasses
cover_seat_with_toilet_paper
deal_drugs
defecate drink_alcohol eat_food exercise have_solace hide nap put in take out contacts read smoke spy squat_on_toilet take_medicine take_phone_call urinate use drugs vandalise write_notes

Model: SVM (Support Vector Machine

Kernel: Sigmoid

Gamma: 0.1

adjust jewelry scarf breast feeding change clothes change diaper change pad tampon dean glasses seat with toilet paper deal drugs defecate drink alcohol eat food exercise have_solace hide nap put in take out contacts smoke squat_on_toilet take_medicine take_phone_call talk urinate use_drugs vandalise write notes

Model: SVM (Support Vector Machine **Kernel:** RBF (Radial Basis Function)

Gamma: 0.1

adjust jewelry scarf
breast feeding
change_clothes
change diaper
change pad tampon
dean glasses
seat with toilet paper
deal drugs
defecate drink_alcohol eat_food exercise have_solace hide nap put in take out contacts smoke squat on toilet take medicine take_phone_call talk urinate use_drugs vandalise

write_notes

Model: SVM (Support Vector Machine **Kernel:** RBF (Radial Basis Function)

Gamma: 0.1

adjust jewelry scarf
breast feeding
change_clothes
change diaper
change pad tampon
dean glasses
seat with toilet paper
deal drugs
defecate drink alcohol eat food exercise have_solace hide put in take out contacts smoke squat_on_toilet take_medicine take_phone_call talk urinate use_drugs vandalise

write_notes

KNN (K-Nearest Neighbours)

Model: KNN (K-Nearest Neighbours)

K: 1000

adjust jewelry_scarf
breast feeding
change_clothes
change diaper
change pad_tampon
dean glasses
cover_seat_with_toilet paper
deal_drugs
defecate
drink_alcohol drink_alcohol eat_food exercise have_solace hide nap put in take out contacts smoke spy squat_on_toilet take_medicine take_phone_call talk urinate use drugs vandalise write_notes

Model: KNN (K-Nearest Neighbours)

K: 10

adjust jewelry scarf
breast feeding
change_clothes
change_diaper
dhange_pad_tampon
dean_glasses
seat_with_toilet_paper
deal_drugs
defecate drink_alcohol eat_food exercise have_solace hide nap put in take out contacts smoke spy squat_on_toilet take_medicine take_phone_call talk urinate use drugs vandalise write_notes

Logistic Regression

Model: Logistic Regression

Solver: LBFGS

Regularisation Strength: 0.001

adjust jewelry_scarf
breast_feeding
change_clothes
change_diaper
change_pad_tampon
dean_glasses
cover_seat_with_toilet_paper deal drugs defecate drink alcohol eat food exercise have solace hide nap put in take out contacts smoke squat_on_toilet take_medicine take_phone_call talk urinate use drugs vandalise write notes

Model: Logistic Regression

Solver: LBFGS

Regularisation Strength: 100

adjust jewelry_scarf
breast feeding
change_clothes
change diaper
change pad tampon
dean_glasses
cover_seat_with_toilet paper
deal_drugs
defecate drink alcohol eat food exercise have_solace hide nap put in take out contacts smoke squat_on_toilet take_medicine take_phone_call talk urinate use drugs vandalise write notes

ConvLSTM

(Convolutional Long Short-Term Memory)

Convolutional)

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	-20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

LSTM? (Long Short-Term Memory)

Classification: Individual Pairs

Epochs: 20 (x496)

So...?

What behaviours can be detected in bathrooms?

Model: SVM (Support Vector Machine **Kernel:** RBF (Radial Basis Function)

Gamma: 0.1

adjust jewelry scarf
breast feeding
change_clothes
change diaper
change pad tampon
dean glasses
seat with toilet paper
deal drugs
defecate drink_alcohol eat_food exercise have_solace hide nap put in take out contacts smoke squat on toilet take medicine take_phone_call talk urinate use_drugs vandalise

write_notes

- We can differentiate between a lot of behaviours

- We can differentiate between a lot of behaviours
- SVMs with RBFs seem to be the best

- We can differentiate between a lot of behaviours
- SVMs with RBFs seem to be the best
- Vague behaviours are the hardest to classify (e.g. vandalism)

- We can differentiate between a lot of behaviours
- SVMs with RBFs seem to be the best
- Vague behaviours are the hardest to classify (e.g. vandalism)
- 80% accuracy!

Collect some data!

- Collect some data!
- Collect some more data! (Sinks? Doorways?)

- Collect some data!
- Collect some more data! (Sinks? Doorways?)
- What actually is a camera? What is privacy infringing?

- Collect some data!
- Collect some more data! (Sinks? Doorways?)
- What actually is a camera? What is privacy infringing?
- Where could this be used? Does it work well?

- Collect some data!
- Collect some more data! (Sinks? Doorways?)
- What actually is a camera? What is privacy infringing?
- Where could this be used? Does it work well?
- How can this data be used for truly evidence based design?

What now?

Baptiste.higg.gs