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What degree of fidelity can be reached when using a 
combination of sensor technology and machine learning 

for a privacy-preserving data gathering system to 
measure human behaviour in buildings?

More specifically, how can workplace sanitary facilities 
usage be monitored using such a system?
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What degree of fidelity can be reached when using a 
combination of sensor technology and machine learning 

for a privacy-preserving data gathering system to 
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More specifically, how can workplace sanitary facilities 
usage be monitored using such a system?

What behaviours can be 
detected in bathrooms?





















Electronics get hot





Screens produce heat



Walls affect 
networking















Behaviours:
["sitting", "browsing_phone", "take_phone_call", "standing", 
"straighten_clothes", "comb_brush_hair", "leave"]



99.8%!



Behaviours:
['adjust_jewelry_scarf', 'breast_feeding', 'change_clothes', 
'change_diaper', 'change_pad_tampon', 'clean_glasses', 
'cover_seat_with_toilet_paper', 'deal_drugs', 'defecate', 
'drink_alcohol', 'eat_food', 'exercise', 'have_solace', 'hide', 'nap', 
'put_in_take_out_contacts', 'read', 'smoke', 'spy', 
'squat_on_toilet', 'take_medicine', 'take_phone_call', 'talk', 
'urinate', 'use_drugs', 'vandalise', 'write_notes']





SVM (Support Vector Machine)





K: Linear K: Poly K: RBF K: Sigmoid

γ: Low

γ: Medium

γ: High
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KNN (K-Nearest Neighbours)



K = 1 K = 10 K = 100 K = 1000
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Model: KNN (K-Nearest Neighbours)
K: 1000



Confusion
Matrix

Model: KNN (K-Nearest Neighbours)
K: 10



Logistic Regression



K = 1 K = 10 K = 100 K = 1000
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Model: Logistic Regression
Solver: LBFGS
Regularisation Strength: 0.001



Confusion
Matrix

Model: Logistic Regression
Solver: LBFGS
Regularisation Strength: 100



ConvLSTM 
(Convolutional Long Short-Term Memory)



Conv? (Convolutional)



LSTM? (Long Short-Term Memory)



Pair Contrast

Classification: Individual Pairs
Epochs: 20 (x496)
Sequence Length: 10
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So… ?
What behaviours can be 
detected in bathrooms?



Confusion
Matrix

Model: SVM (Support Vector Machine
Kernel: RBF (Radial Basis Function)
Gamma: 0.1
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Main takeaways:
- We can differentiate between a lot of behaviours

- SVMs with RBFs seem to be the best

- Vague behaviours are the hardest to classify (e.g. vandalism)

- 80% accuracy!
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What’s left?    (a LOT)

- Collect some data!

- Collect some more data! (Sinks? Doorways?)

- What actually is a camera? What is privacy infringing?

- Where could this be used? Does it work well?

- How can this data be used for truly evidence based design?



What now?



Baptiste.higg.gs
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