

KEEPING UP WITH THE CODE

Communicating the Decision Making History of Architectural
Scripts

W. HAMILTON,
University of New South Wales, Sydney, Australia
william.hamilton@cox.com.au

Abstract. There is often a disconnect between users of scripts and
their understanding of the decisions made within a coded process,
either due to a lack of knowledge regarding the contents of the script
or poor communication of its intent. In a script where there are
multiple potential outcomes, a decision must be made, either through a
human informed rationale or a mathematical optimisation in a logic
system. When architectural decisions and choices are made there is
often little documentation of this criteria and the potential for this to
affect design thinking is undervalued. This issue is exacerbated when
the act of decision making is embedded and hidden within complex
code. This research aims to develop a method that successfully traces
scripted decision making history (DMH). A relational database titled
Huginn has been developed to test the feasibility of tracing decision
making history in scripting. This was achieved through a Python Web
framework that has data sent to it in a JavaScript Object Notation
(JSON) format from Grasshopper. The result of this research is a
system that can effectively link a series of objects and their decisions
back to their origins. This research contributes to developing
theoretically grounded coding protocols and expanding an
understanding of the possibilities that an alternate scripting convention
can present to improving design practice.

Keywords. Decision making; Database; Communication; Visual
programming; Design rationale

2 W. HAMILTON

1. Introduction

“Any sufficiently advanced technology is indistinguishable from magic”
(Clarke 1973, p.236). Despite scripting becoming increasingly pertinent as a
tool to aid design practice and operational workflows in the architecture
industry, Clarke’s classic quote still applies to the modern professional
world. Through consultations with staff from Cox Architecture, the industry
partner of the research, a recurring issue arose; the inability to understand the
procedure and logic of architectural scripts that colleagues had developed,
accompanied by a reluctance to engage with emerging technologies. An
architectural script can be defined as any piece of code, usually written in a
visual programming language such as Grasshopper or Dynamo, intended to
“automate repetitive activities…extend design experimentation…[and]
improve file-to-factory protocols” (Burry 2011, p.8-9). The identified
industry aversion to engage with scripting is a stark juxtaposition to the rate
at which computational tools for the architecture, engineering and
construction (AEC) industries are becoming increasingly powerful and
accessible, calling for an investigation into the communication and
interpretation of data from scripts (ibid.).
 Compounding this issue of poor comprehension, is an industry-wide
underappreciation of the value understanding decision making provides to
architectural practice. As a result, there has been minimal established
procedure for documentation of DMH (Peng et al. 2000). In this paper DMH
is defined as the series of decisions and logical rules that are connected in a
computational system that culminate in an outcome. The outcome of DMH
can be either an architectural model or an individual geometry or value
within. In other academic works such as that of Chachere and Haymaker
(2011, p.86), the term Design Decision Rationale (DDR) is used as a
definition of “a set of assertions that…support design decisions” which is the
information this research intends to document and trace. AEC professions
are experiencing an increased demand for their outcomes to be justifiable
through the practice of evidence-based design and a routine documentation
of DDR would provide strong evidence to substantiate and quantify
reasoning (Criado-Perez, et al. 2019).
 This paper seeks to address a prominent lack of involvement within
architectural practice regarding scripting participation and DDR
documentation. By partaking in an action research methodology, the
challenge can be approached through an iterative design process grounded in
feedback from industry professionals to ensure the outcomes are tailored and
relevant to practice. Reluctance to participate in the automation of
architectural practices can be derived numerous concerns, primarily
originating from a lack of trust in an unknown system (Heumann & Davis

KEEPING UP WITH THE CODE

2020). Through the development of a prototype workflow, this research
intends to contribute to overcoming this barrier of technological engagement
by increase transparency in scripts and therefore the ease at which their
processes can be comprehended. Furthermore, this work seeks to increase
the success, accessibility and uptake of automated workflows, encouraging
more people to be involved in using computational design tools.

2. Research Aims

The key aim of this project is to explore the viability of documenting
decision making that is embedded within architectural and engineering
scripts. This is an experiment in both the technical feasibility of the task and
the ability to develop a scripting procedure that makes it possible. More
specifically, this research aims to develop a workflow that reveals these
decisions in an easily processable way by users. This takes the form of a
prototype workflow for extracting DMH from a Grasshopper script and
exporting it to a Web hosted database. Subsequently, a function is developed
to compile and collate this data into a format that interpretable by humans.
 By building on the work of others in the field, it is already achievable to
get geometric data into a Web environment, but this research seeks to
discover if it is possible to integrate a communication of decision rational
into this form of system (Leung, et al. 2018). Proving this is achievable
raises the question of the potential to make this system approachable by an
inexperienced user to give it robustness for industry application.

3. Research Questions

 To what extent is it possible to analyse the decision making history
embedded in an architectural script to inform enhanced comprehension of
the code?

Which can be broken down into two sub questions that must be addressed:
 1. In what ways can embedded DMH be extracted from architectural
scripting?
 2. To what extent can a convention be established for the documentation
of decisions that facilitates both human input and interpretation of scripted
decisions.

4. Methodology
“Action research is a name given to a particular way of looking at your
practice to check whether it is as you feel it should be (McNiff 2013)”.
When engaging with emerging technologies, often the most effective way to
understand the subject matter is to take an immersive approach that involves
practitioners and industry professionals who are most familiar with the

4 W. HAMILTON

realistic applications, successes and shortcomings of such technologies.
Action research provides the ideal methodological framework for
researching a topic that is so intrinsically tied to industry professionals and
work place environments. This makes the methodology well suited for this
investigation due to the nature of the case study being so intertwined with
both emerging digital technologies and the fact that it is a direct response to
challenges identified by those working in practice. The outcomes achieved in
this research were only possible due to the close collaboration with the
industry partner Cox, not only as a provider of technical support but by
grounding the investigation in a relevant context.
 Upon identifying the issue, the need to be able to understand the
relevance of decision making in scripts, action research calls for an
intervention to the problem to be taken (Azhar, Ahmad, & Sein 2010).
Following this, and for a development to be considered research,
observations and data must be collected about the intervention. The data
must then be reflected upon and used to inform the decisions made about
future iterations and generations of the developed solution. This is a cyclical
process that should be continued until there is a sufficient understanding of
the problem, potentially leading to further research or a different approach to
the topic. These principles manifest themselves in this research in the form
of an iterative design process, with future decisions being informed by their
predecessors. In both the Web database and Grasshopper workflow, the
effectiveness and usability were gauged and used to inform changes that
should be made in following iterations. Furthermore, these two components
were developed in parallel, allowing the discoveries and hurdles from one to
inform the necessary course of action for the other. By following a cyclical
procedure of ‘plan’, ‘action’, ‘observe’ and ‘reflect’, the research utilises the
iterative design principles of action research to improve the outcome through
meaningful assessment (Kemmis 2009).

Figure 1. A diagrammatic representation of Kemmis’ action research theory

PLAN

OBSERVE

REFLECT

ACTION

KEEPING UP WITH THE CODE

5. Literature Review

SCRIPTING IN ARCHITECTURE AND THE RELEVANCE OF DATA

“Twenty years ago we thought computers were machines for making things;
today we find out they are even more indispensable as machines for
thinking” (Carpo 2018, p.135). With the rise of computing power, access to
technology within the AEC field and increased understanding of the
capabilities of computational design practices to improve workflows, the
industry is developing new methods of automation and optimisation. In an
architectural context, this often takes the form of using visual scripting
languages such as Grasshopper and Dynamo as well as conventional coding
platforms like Python and VBScript (Leitão & Santos 2011; Cichocka, et al.
2017). Optimisation spans a wide scope of applications from solar access
optimisation scripts already abundant in industry to experimental automatic
compliance checking scripts, a contemporary point of focus in research
(Balaban 2012; Patlakas, et. al. 2017; Guedes & Andrade 2019).
 While data is often the driving factor of automated computational
systems, practices within the AEC industry have minimal precedence of
utilising the potential of data to inform systems or to achieve creative
outcomes. Sectors such as finance and manufacturing have historically
developed on a framework of “technological change captured under the
rubric of automation” (Pardo-Guerra 2012, p.568), performing with high
levels of engagement with data to inform decisions and improve efficiency.
On the contrary, creative fields like architecture have been slow to adapt to
the use of data manipulation in creative workflows, at least consistently at a
wide scale. The works of Hua & Jia (2010) and Nagy, et al. (2017) are
showcases of exploratory work with generative data systems as a method for
optimising layout planning but this is not a reflection of standard practice.
 The applications of data for the architectural industry aren’t restricted to
creative and/or optimisation solutions however, with its primary application
manifesting in the utilisation of Building Information Modelling (BIM). A
survey taken in 2017 highlighted that 87% of employees in architecture
firms identified with using Revit (Gardner 2018), a singular BIM software,
in their workplace suggesting that BIM has a near ubiquitous integration
within the industry. BIM is essential to modern AEC project workflows due
to its ability to “improve productivity and quality of project delivered, curtail
the project delivery time and cost” (Kushwaha 2016, p.100). When
considering the extensive application of BIM it suggests that any successful
creative or optimisation solution informed by data must be able to be
integrated into a BIM workflow to mesh with architectural industry
procedure.

6 W. HAMILTON

ARCHITECTURE AS DECISION MAKING

“Design consists of many interdependent decisions” (Lewis, et al. 2007).
Fundamentally, the practice of architecture is a culmination of decision
making as a result of numerous changing conditions, influences, objectives
and constraints. The process of decision making is complex and requires
individuals to formulate some degree of assessment criteria to do so,
regardless of if they are conscious of it or not. Decision Theory (DT), the
process one goes through when making choices, rationalises the best course
of action to maximise expected utility (Chachere & Haymaker 2011).
 With decision making being “argued to be the principle activity” of
architecture and engineering, (Lewis, et al. 2007) it is logical that this
process should be well documented and recorded. Multiple scholars have
explored approaches to this including Chachere and Haymaker’s rationale
clarity framework (2011) and Peng et. al.’s object-oriented information
management framework (2000) which both provide suggested structures for
workflows which mandate a formal documentation of design decisions,
which: (1) provide a justification and DT grounded rationale of choices and
(2) provide the opportunity to retrieve a record of DMH. Peng et al. suggest
this can be achieved by linking decision history to rationalised CAD items
through the object oriented programming language C++.
 By utilising data driven design, logic systems and even artificial
intelligence within design, architects are ‘handing over’ a large portion of
decision making to the computer. When considering that any logic
embedded into code and scripts is ultimately just instructions to the
computer on how to make decisions, it is a reasonable assertion that a
method of documenting and tracing DMH should be as equally sought after
as a manual recoding method.

MACHINE DECISION MAKING

The DT of a computer needs to be rationalised in the form of numerical
values, which is used to create a decision matrix (Arroyo, et al. 2012). In the
work of Arroyo et. al., they specifically explore the various mathematical
models of multiple-criteria decision making and their relevance to the AEC
industry. All the methods are characterised by their dependency on a
decision matrix to inform choices, coincident with the data type a computer
requires to complete decision making processes. As discussed earlier, a body
of scholarship already exists in which the importance and methods of
documenting decision making history are explored, as well as the procedure
for embedding DT into code but there has been little to no work done on the
combination of these two concepts, providing an opportunity for further
research. It should be noted that having history linked to an object is not a
new concept, as showcased in modelling software like Maya but there are no
standardised systems of tracing scripted DMH.

KEEPING UP WITH THE CODE

 A major challenge in documenting scripted design decisions is the
quantification of design qualities. While architecture evokes feelings and
experiences that would conventionally be described through feelings and
emotive language such as “organic” or “kitsch”, a computer demands a finite
taxonomy for processing calculations (Stott 2015). Durmisevic et. al. (2001)
approached this challenge by creating ‘aspects’ of design traits within the
categories of attractiveness, wayfinding, daylight and physiological to
quantitatively measure qualitative design elements. An alternative method
was explored by Berry & Park (2017) where sensory equipment was used to
produce numerical data such as temperature and thermal comfort to
rationalise the experience of architectural space. Some architectural contexts
naturally lend themselves to rationalising qualitative experience such as
sports architecture, where the success of geometric decisions in the design
process is intrinsically linked with profit and therefore a machine-legible
value of success (Joseph, et al. 2015).

HUMAN INTERPRETATION OF MACHINE DECISIONS

Beyond the challenge of interpreting and processing the DMH of a script,
there is also a significant hurdle of both turning the data into human-readable
content as well as allowing architects to engage with and make use of the
information to improve design decisions. Because architecture is inherently a
visual discipline, both in its procedure and outcome, “it is no surprise that
many students, architects and academics consider themselves ‘visual
thinkers’” (Austin & Wajdy 2016, p.831) and thus struggle to understand
raw data and conventional coding methods. Furthermore, a major challenge
posed by increased computational involvement and complex coding
solutions in design workflows is the disconnect between users and the
outcome produced by scripts. A study by Davis, Burry and Burry (2011)
found that architects struggled to comprehend the function of unfamiliar
visual scripts despite being familiar with all individual functions involved.
This research highlights the need for data to be presented to architects in a
visual and simplified format to ensure comprehensibility and usefulness.

6. Case Study

This case study seeks to address the research aims through two primary
developments; A Web-based database titled Huginn and a localised
Grasshopper workflow. Both elements were developed simultaneously and
in collaboration with Cox resulting in an iterative design process that was
grounded in industry relevance. While the decision was made to work in
Grasshopper for this experiment due to it being most familiar to the
researchers, the principles employed in this research are software agnostic
and could theoretically be applied to other platforms such as Dynamo.
Furthermore, the Grasshopper workflow should be applicable to all projects

8 W. HAMILTON

and jobs but a pre-existing case study script was selected for the sake of
testing and proof of concept.

6.1 CHOOSING A CASE STUDY SCRIPT TO OPERATE ON: THE STADIUM
BOWL

As there was a need for a base script to host the DMH tracing workflow that
was developed, it was chosen to use a portion of a stadium bowl script
written by Cox. This choice was made due to the large amount of decisions
that are made throughout the design of a stadium bowl and the fact sports
architecture contains many logical and geometric dependencies meaning
decisions have direct influences on the form and therefore future decisions
(Joseph, et al. 2015). By using an existing script to test the workflow on, it
meant that time could be allocated towards new investigations as well as
ensuring the research had relevance to industry standard procedures and the
types of decisions that were recorded would have substance as plausible and
realistic outcomes.

6.1.1 Features of the Stadium Bowl Script

The portion of the stadium script that was isolated can be divided into
multiple clusters, each performing a primary function in creating the output
geometry and data. These clusters are titled as follows and their geometric
outputs listed in Table 1. Figure 2 depicts example output geometry from
each of the clusters.

TABLE 1. Clusters within the stadium script

Cluster: 1. Gridlines

2. Field of

Play
3. Plats 4. Bowl +

Aisles
5. Seats

Outputs:

X Centreline Field Lower bowl
plat profile

Lower bowl Seat outlines

Y Centreline Boundary
line

Suite bowl plat
profile

Suite bowl Seat count

Gridlines Upper bowl plat
profile

Upper bowl Row count

 Line of sight Aisle lines Aisle count
 Steps

KEEPING UP WITH THE CODE

Figure 2. Example output geometries from the clusters

6.2 DEVELOPING HUGINN, A WEB-BASED RELATIONAL DATABASE FOR
STORING JSON OBJECTS

6.2.1 Using Django REST framework to build the Web API

To achieve a system in which DMH can be traced, a method had to be
established for linking decisions to each other in order to comprehend the
‘history’. The chosen solution to this was to write a series of Python code
modules using Django REST Framework. Django is a tool for building Web
application programming interfaces (API). The Python code was written in a
way that utilises classes, where a class is a set of instructions for creating
objects that have assigned properties. One possible feature of classes is the
ability to link two objects together which will be referred to as mapping,
effectively creating a child and parent object (Figure 3). This structure of
mapped objects stored together is known as a relational database, meaning
that any decision influenced by a previous decision will have it linked as a
parent in the database structure.

1 2 3

4 5

10 W. HAMILTON

Figure 3. Diagram of object mapping with Python classes

Two classes were created, one called parameterObject for storing objects
with decisions attached to them (Figure 4) and one called
paramaterMapThroughObject for storing the mapping of two objects (Figure
5). Django also required the setup of numerous serializers and definitions to
allow the database to not only receive data sent to it, but to check that the
information is correctly in a JavaScript Object Notation (JSON) format and
make this readable by the class functions.

Figure 4. parameterObject class for constructing objects

Figure 5. parameterMapThroughObject class for constructing objects

KEEPING UP WITH THE CODE

6.2.2 Hosting the code on a Pythonanywhere server

On its own, Django only provides a local API to interact with, so a server
was set up with Pythonanywhere which allows Python code to be hosted
online. This allows anyone with the URL to send information to the Huginn
database as well as view what is currently being stored (Figure 6). By
hosting Huginn online, a collaborative platform was developed meaning
multiple colleagues or even stakeholders can participate in the same system.

Figure 6. The Huginn database

6.2.3 Posting and mapping objects on Huginn

To get information onto the database, a ‘post’ request must be made in
which the database checks if the information is the correct type for it to
accept. Initially, to test if the database was working, objects were posted
directly from the Django API. The required input variables are documented
in Figure 7. The variable ‘Data text’ is where the DDR linked to the object is
stored. Once the localised posting method had been resolved, a service called
Postman was used to test sending a post request from an external computer.

12 W. HAMILTON

Figure 7. The input to post directly from Huginn

6.3 DEVELOPING THE HUGINN SUITE FOR GRASSHOPPER AND A
WORKFLOW FOR BRIDIGNG DATA BETWEEN THE TWO PLATFORMS

6.3.1 Posting text from Grasshopper

Once Huginn was capable of receiving data inputs, work was able to
simultaneously commence on the development of the Grasshopper suite.
This was started by manually typing a JSON formatted text box (Figure 8)
and feeding it into a GHPython component, a feature which allows the
writing of Python code within Grasshopper. Figure 9 depicts the Python
script that executed a post request, successfully sending data from
Grasshopper to the Web.

Figure 8. Test data sent from Grasshopper to Huginn

KEEPING UP WITH THE CODE

Figure 9. Python code to post data

6.3.2 Converting geometry to a text format

To send geometry objects with assigned decisions to the Huginn database,
they first had to be converted into a text format that could be stored within
the JSON that gets posted. Building on the existing work of Cox, a
component was employed that uses GHPython to convert geometry into
ArchiJSON files. These are JSON format files with specific instructions on
how to construct a geometry including its data type and the coordinates of
the points used to construct it. Due to time limitations of this research, the
component was only capable of processing certain geometry types (Table 2),
simply reproducing the name of the data type if it couldn’t deconstruct it into
core elements.

TABLE 2. List of data types the ArchiJSON component can process

Accepted Data Types Incompatible Data Types

Point Mesh

Point collection Surface

Curve Polysurface

Curve collection Point cloud

Plane

String

Boolean

Integer

Float

14 W. HAMILTON

6.3.3 Creating the components for a ‘plug-and-play’ workflow including the
documentation of DMH

In order to make the workflow intuitive and practical to use, it was essential
to simplify the amount of manual inputs required. By using an assortment of
native Grasshopper components, most of the information required by the
Huginn database could be automatically extracted from the input geometry.
This was packaged into a cluster called object_to_Huginn that had only three
inputs as follows:

1. The geometry or data
2. The name of the object
3. The decision making process associated with the object

The inputs were collated and packaged into a JSON format that is posted to
Huginn. A second cluster called map_to_Huginn was developed for creating
the mapping between objects and their histories, only requiring two inputs as
follows:

1. Parent object
2. Child object

6.3.4 Deploying the Huginn Suite for Grasshopper into the stadium script

After verifying the success of the Grasshopper clusters and refining them
through a series of iterations to improve simplicity of use, the workflow was
retroactively inserted into the stadium script. Every decision that affected a
choice of outcome was documented and linked together within the Huginn
database. An example of the mapped DMH tree for a given object is shown
in Figure 10. Deploying the workflow into the stadium script highlighted
several issues with its state, including poor syntax for naming conventions
and extremely slow posting when handling large quantities of objects which
resulted in several new iterations of code being written.

Figure 10. Example DMH tree of ‘Suite stairs’ object

KEEPING UP WITH THE CODE

6.4 PROCESSING, UNDERSTANDING AND COMMUNICATING THE DATA

Once the database had been compiled, it was then possible to identify any
object and then observe all the linked prerequisites. This was achieved by
calling a function which was only searchable via the localised Huginn ID
which is randomly assigned, making it an impractical method of returning
data. Furthermore, when an object was searched it provided all the variables
for each of the prerequisite objects, which although useful for the
preservation of data, could easily reach a surplus of 1000 lines making it
difficult to process as a human reader.
 Given this result, some additional Python code was written to iterate over
the DMH map, just producing the name of the objects and their associated
history in a comma separated values (CSV) file. With some simple post-
production this information was able to be formatted into an easily readable
table recalling all the relevant DMH of an object throughout a script (Table
3). This final step of the case study proved that it was possible to extract
DMH embedded in a script and format into a series of prose for the
consumption of users and designers.

TABLE 3. CSV table of full DMH of the ‘Suite stairs’ in the stadium script

16 W. HAMILTON

Figure 11. Overview of the complete Huginn workflow

7. Discussion
Through a series of iterative testing this research has successfully
demonstrated the possibility to develop a system in which embedded
decision making can be documented and recalled on demand. The viability
of hosting geometry in a JSON text format in an online database has been
shown along with the ability to assign decisions to specific objects. Perhaps
the most critical and significant discovery of this research was the
showcasing of the potential to draw links between decisions throughout the
span of a project in an environment where numerous stakeholders can
engage with the data. These discoveries have significant implications for
future research potential as well as considerations for reformations in
scripting protocols within industry, however the limitations of the research in
its current state must also be acknowledged.
 The most substantial constraint of this research was the 10-week
timeframe in which it was conducted. Many challenges could have been
overcome given more time, however, this also presents opportunities for
further research and development. Given a longer time frame, an invaluable
step would be to assess the effectiveness of the developed workflow and its
potential to enhance comprehension and inform design. While it has been
proven that it is possible to trace DMH, there has been no exploration into
the usefulness of the information in a design workflow or the usability of the
current interface. Iterations of user testing, surveys and comparisons would

Grasshopper script

Python modules Huginn API

Huginn GH suite JSON file

DMH in CSV file

KEEPING UP WITH THE CODE

be able to contribute an assessment of the practical applications and viability
of this kind of system. In addition, there was an initial intent to incorporate
the output data within a Rhino interface where the data could be viewed
attached to the relevant geometry (Figure 12). Given data can be pulled back
from the Web, this kind of system would be easily implemented given
addition time and some skill in User Interface design.

Figure 12. Mock Rhino interface design

 Perhaps the biggest limitation encountered without an immediate
proposed solution is the automation of logic based decisions. Throughout the
research, it was discovered that decisions could be sorted in to two
categories; human made and logic based. An example of a human made
decision is “This will be a soccer field as opposed to an AFL field”. A logic
based decision, while still initially defined by a human, is a criteria assessed
by the script such as “According to regulations, maximum step height is ϰ,
therefore this stair should be broken in two”. In the current workflow, the
need to document this manually is impractical and confusing, suggesting this
needs further investigation.
 Regardless of the current constraints, this research has far reaching
implications for the future of scripting and coding for the AEC industry.
Through the confirmation of additional testing, a need to document decision
making and having the information accessible to designers could prove to be
invaluable with the growing demand for evidence-based design (Criado-
Perez, et al. 2019). Along with increasing the trust of colleagues, this
research could be expanded to explore the implications of using a DMH
tracing system between stakeholders as a means of ensuring accountability
for design decisions. This could open investigation into the implementation

18 W. HAMILTON

of blockchain or other data protection methods for the built environment to
ensure the legitimacy of a DMH tracing system if it were to be used as a
binding collaborative platform.

8. Conclusion

Using a Web-hosted relational database allows for the collection and
communication of invaluable DMH that is otherwise lost within the
complexity of architectural scripts. Widespread aversion in the AEC
industries to engaging with poorly understood computational techniques is
paradoxically occurring parallel to an era of unprecedented demands for data
and evidence-based design to inform practice. This study has explored the
viability of using a workflow within a localised scripting environment to
document DMH that is accessible remotely by colleagues and stakeholders.
Such a system serves to provoke thought and further investigation into
addressing the friction point derived from the challenges of technical
complexity and the need for access to data. By developing a workflow for
sending DDR linked to objects from Grasshopper into the Huginn database
and returning the relevant DMH of a selected entity, this research has proven
the possibility of integrating a similar system into industry practice. The
ability to view the DMH of elements in a script not only enhances the
comprehension of a script’s function but provides a tool to justify and defend
decisions through the lens of data driven and evidence-based design. The
contributions of this paper provide a definitive step towards a solution that
simultaneously demystifies the complexity of scripting while communicating
the significance of data and decision making within architectural workflows.
In doing so, this project has laid the groundwork for future developments
that may eventually overhaul how architects approach scripting procedures,
empowering the designer with an arsenal of easily accessible data, reforming
how we sculpt urban space.

Acknowledgements
Thank you to Cox Architecture for the workspace and research time provided to work on this
project and an especially large thanks to Andrew Butler who provided an invaluable
contribution of ideas, technical assistance and guidance through this research process.

References

Arroyo, P., Tommelein, I. D. & Ballard, G., 2012. Deciding a sustainable alternative by
'Choosing by Advantages' in the AEC Industry. San Diego, Proceedings of the 20th
Annual Conference of the International Group for Lean Construction.

Austin, M. & Wajdy, Q., 2016. I’m a visual thinker: rethinking algorithmic education for
architectural design. Melbourne, Proceedings of the 21st Annual Conference of
CAADRIA, pp. 829-838

KEEPING UP WITH THE CODE

Azhar, S, Ahmad, I & Sein, MK 2010, ‘Action Research as a Proactive Research Method for
Construction Engineering and Management’, Journal Of Construction Engineering And
Management-Asce, vol. 136, no. 1, pp. 87–98.

Balaban, Ö., Kilimci, E. S. Y. & Cagdas, G., 2012. Automated Code Compliance Checking
Model for Fire Egress Codes. Prague, Proceedings of the 30th Annual Conference of
eCAADe, pp. 117-125

Berry, J. & Park, K., 2017. A Passive System for Quantifying Indoor Space Utilization.
Cambridge, Proceedings of the 37th Annual Conference of ACADIA, pp. 138-145

Burry, M, 2011, Scripting cultures : architectural design and programming, Wiley, Chichester,
UK.

Carpo, M., 2018. ‘Excessive Resolution: Designers meet the second coming of artificial
intelligence’, Architectural Record, vol. 206, no. 6, pp. 135–136

Chachere J., and Haymaker J., 2011. Framework for Measuring the Rationale Clarity of AEC
Design Decisions, ASCE Journal of Architectural Engineering, 17(3), pp. 86-96.

Cichocka, J. M., Browne, W. N. & Rodriguez, E., 2017. Optimization in the architectural
practice An International Survey. Hong Kong, Proceedings of the 22nd Annual
Conference of CAADRIA, pp. 387-396

Criado-Perez, C., Collins, C.G, Jackson, C.J., Oldfield, P., Pollard, B., Sanders, K., 2019,
Beyond an ‘informed opinion’: evidence-based practice in the built environment,
Architectural Engineering and Design Management

Durmisevic, S., Ciftcioglu, Ö. & Sariyildiz, S., 2001. Quantifying the Qualitative Design
Aspects. Helsinki, Proceedings of the 19th Annual Conference of eCAADe, pp. 111-116

Gabel, D., 1995. An Introduction to Action Research. San Francisco, National Association for
Research in Science Teaching (NARST).

Gardner, N., 2018. Architecture-Human-Machine (re)configurations - Examining
computational design in practice. Lodz, Proceedings of the 36th Annual Conference of
eCAADe, pp. 139-148

Guedes, Í. & Andrade, M., 2019. Automatic Rule-Based Checking for the Approval of
Building Architectural Designs of Airport Passenger Terminals based on BIM. Porto,
Proceedings of the 37th eCAADe and 23rd SIGraDi Conference, pp. 333-338

Heumann, A., Davis, D, 2020. Humanizing Architectural Automation: A Case Study in Office
Layouts, Impact: design with all senses : proceedings of the Design Modelling
Symposium 2019 1st ed. 2020., Springer, Cham. pp.662-670

Hua, H. & Jia, T.-L., 2010. Floating Bubbles: An agent-based system for layout planning.
Hong Kong, Proceedings of the 15th Annual Conference of CAADRIA pp. 175-183

Joseph, D., Kim, A., Butler, A. & Haeusler, M. H., 2015. Optimisation for Sport Stadium
Design. Hong Kong, Proceedings of the 20th Annual Conference of CAADRIA, pp. 573-
582

Kemmis, S. 2009. Action research as a practice-based practice. Educational Action Research.
17, pp. 463-474

Kushwaha, V., 2016. Contribution Of Building Information Modeling (BIM) To Solve
Problems In. International Research Journal of Engineering and Technology, 3(1)

Leitão, A. & Santos, L., 2011. Programming Languages for Generative Design: Visual or
Textual?. Ljubljana, Proceedings of the 29th Annual Conference of eCAADe, pp.549-557

Leung, E., Asher, R., Butler, A., Doherty, B., Fabbri, A., Gardner, N., Haeusler, M. H., 2018.
Redback BIM: Developing ‘De-Localised’ Open-Source Architecture-Centric Tools.
Beijing, Proceedings of the 23rd Annual Conference of CAADRIA, pp. 21-30

Lewis, K. E., Chen, W. & Schmidt, L., 2007. Decision making in engineering design, s.l.:
New York: ASME.

McNiff, J., 2013. Action Research: Principles and Practice. New York, Routledge, 3rd
Edition

20 W. HAMILTON

Nagy, D. et al., 2017. Project Discover: An application of generative design for architectural
space planning. Toronto, Proceedings of the Symposium on Simulation for Architecture
and Urban Design Article No. 7.

Pardo-Guerra, 2012. Financial automation, past, present and future. In: K. K. Cetina & A.
Preda, eds. The Oxford handbook of the sociology of finance. s.l.:Oxford University
Press.

Patlakas, P., Livingstone, A. & Hairstans, R., 2017. An Automated Code Compliance system
within a BIM environment. Rome, Proceedings of the 35th Annual Conference of
eCAADe, pp. 153-160

Peng, C. et al., 2000. Recording and managing design decision-making processes through an
object-oriented framework. Nijkerk, 5th International Conference on Design and Decision
Support Systems in Architecture and Urban Planning, pp. 289-306

Stott, R., 2015. 150 Weird Words That Only Architects Use. [Online] Available at:
https://www.archdaily.com/775615/150-weird-words-that-only-architects-use [Accessed 6
October 2019].

https://www.archdaily.com/775615/150-weird-words-that-only-architects-use

	1. Introduction
	2. Research Aims
	3. Research Questions
	4. Methodology
	5. Literature Review
	Scripting in architecture and the relevance of data
	Architecture as decision making
	Machine decision making
	Human interpretation of machine decisions

	6. Case Study
	6.1 choosing a case study script to operate on: The stadium bowl
	6.1.1 Features of the Stadium Bowl Script
	TABLE 1. Clusters within the stadium script

	6.2 developing huginn, a web-based relational database for storing JSON objects
	6.2.1 Using Django REST framework to build the Web API
	6.2.3 Posting and mapping objects on Huginn

	6.3 Developing the Huginn Suite for Grasshopper and a workflow for bridigng data between the two platforms
	6.3.1 Posting text from Grasshopper
	6.3.2 Converting geometry to a text format
	6.3.3 Creating the components for a ‘plug-and-play’ workflow including the documentation of DMH
	6.3.4 Deploying the Huginn Suite for Grasshopper into the stadium script

	6.4 Processing, Understanding and Communicating the data

	7. Discussion
	8. Conclusion
	Acknowledgements
	References

