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Abstract. Modern construction compliance techniques are flawed and 
relies on human-centred techniques to identify disparities in 
construction. Emerging technologies such as machine learning 
provides effective solutions that can outperform any current 
compliance checking techniques. This paper investigates the 
applications of machine learning in construction documentation and 
compliance checking. An analysis system is created from a neural 
network which is trained on artificially generated construction 
scenarios. After the system has learnt the features of a building 
schedule through the process of machine learning, it categorises 
collected point clouds using self-defined ‘shape grammar’. By 
performing 3D scans on site or remotely through UAVs, a high 
definition point cloud is created which, using the analysis system, can 
examine the point cloud and separate it into different categories; a 
process called semantic segmentation. The virtual model can then be 
directly compared against the digital or planned model using the 
dimensions of model features. The system proposed can produce a 
compliance check or quantitative score as well as flagging key areas 
that require intervention. The outcome aims to produce a system 
which is effective in maintaining the compliance of a building during 
development and overall lowers the risks of structural collapse, in 
order to define construction liabilities and increase the safety of 
property inhabitants. 
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1. Introduction: 

The development of a building or structure begins with a design proposal, 
which includes construction plans and digital models which are load tested 
and run through construction simulations to ensure the safety and integrity of 
the structure. During the construction stage, oversights and purposeful 
shortcuts can create problems in the final product which can cause structural 
failures, collapses and potential threats to building inhabitants. 
Unfortunately, it is difficult to accurately regulate and monitor progress 
during the construction; where most quality assurance checks by third parties 
or regulating bodies are performed after the construction has already 
completed (ABCB, 2018). At times, inspections are performed on site during 
the construction phase, but it is difficult to make exact measurements, 
especially if the structure is in an unstable state where direct examination is 
not possible. Additionally, it is difficult to inspect areas of the structure 
where manual measurements are logistically impossible such as external 
facades and enclosed foundations. 
 There have been instances in history where issues in construction 
compliance has cause of structural failure. Notably, the Sampoong 
department store failure in South Korea 1995. The building started showing 
cracks and eventually the roof gave way due to the main columns collapsing 
causing a total structural failure. An investigation further revealed that cost 
reductions and construction malpractice actioned by corrupt officials caused 
the construction of the building to be crippled. Simple construction changes 
resulted in a devastating outcome after this tragic event unfolded, 
international building regulations and building codes were revised and 
enforced to ensure such a tragic event would not happen again. However, 
these issues are still occurring, where in Australia the Opal Tower in Sydney 
Olympic park experienced the same cracking in the structure of the building. 
An investigation was performed by NSW planning, which revealed that 
structural failure was caused by non-compliant support beams and errors 
during construction, along with several other design failures. Major 
structural failure was avoided in this instance due to the fast response rate 
and evacuation of residents. However, a system is essential to prevent 
oversights and negligence in all stages of building development.  

A real-time compliance checking system would be the preferred 
method of regulating building standards and quality during construction. A 
potential solution to this problem is to create a neural network which utilizes 
3D model data which have features that are pre-categorized. Once converted 
into a 3D Point cloud, the artificial dataset has been created which can then 
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be fed into the neural network to create a standalone shape grammar. Unlike 
RGB segmentation (Lawin et al, 2017) conducted in “Deep Projective 3D 
Semantic Segmentation”, the neural network will classify based on point 
relations and neighboring context. By having this newly created shape 
grammar, the system should be able to look at a real 3D point cloud and 
apply classifications to point clusters based on previous information using 
the inference engine. The system can be scaled or tested on various levels of 
detail (LOD), which means that each stage of the construction process; from 
LOD 100 (Conception model) to LOD 500 (As built model) (NATSPEC 
NBP001, 2013). The advantages of this system are that models can be 
archived following the construction process; changes can be made if an issue 
is flagged and that measurements can be made virtually instead of on site if 
required for later amendment. This solution will save time and money as 
well as increasing the safety and reliability of the building. 

2. Research Aims  

The aim of this research is to investigate the applicability of machine 
learning in the context of compliance checking systems within the built 
environment. 
  

3. Research Questions 

How can emerging technologies like machine learning be used to improve 
compliance checking processes? 
 
What are the limitations in utilizing machine learning or machine centered 
analysis systems in comparison to human centered approaches? 

4. Methodology 

The overarching methodology this research project adopts is an adapted 
form of action research applied in a design technology context. Action 
research typically iteratively cycles through four keys phases of planning, 
acting, reflecting, and adapting. This is reflected in the research project 
described here in the way that the initial action plan will be written up with 
various documentation procedures detailed. The initial testing results will be 
quantified and scored in a scientific manner; however, it will then be 
evaluated as a potential replacement of traditional workflow processes. After 
evaluations have been made in early testing, further refinement will be added 
to increase effectiveness or relevance in context to design development. This 
process closely follows the “Application of AR Criteria to a DR Exemplar” 
as detailed by (Cole et. 2005) where action research drives the criteria and 
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design research forms the assessment and outcome reflection. To generalise 
the research methods, parts of the research covers traditional scientific 
research with a hypothesis and aim, however; focuses on human centred use 
of the research in the context of design. To conclude, by detailing action 
research using the characteristics of “Process Model, Structure, Typical 
Involvement and Primary Goals” (Baskerville, 1999), the resultant can be 
assessed using design research criteria (Cole et. 2005). It is expected that the 
case study will go through several iterations however the research aims will 
remain the same throughout experimentation. 

5. Background Research/Literature review 

5.1 PREVIOUS CASE STUDIES:  

5.1.1 A 3D Point-cloud-based Verification of As-built Construction Progress 

There have been several studies that have explored methods in documenting 
the construction process; notably in “A 3D Point-cloud-based Verification of 
As-built Construction Progress” (Shih & Wu, 2005). The paper explores the 
collection of a 3D point cloud to monitor the construction process, and then 
represent the data digitally. The technique collects a two point clouds, one 
earlier in construction schedule, and one in a later time. By using the 
technique of a Boolean intersection function, they can isolate the differences 
between each scan, revealing the progress between two timeframes. This is 
effective for archival processes and datalogging, and can be used for manual 
observational differences, however, is not sufficient in detailing 
inconsistencies on a large scale. Additionally, any large changes during the 
initial foundation stage such as facades or large envelope and changes in 
LOD will result in inconsistencies and problems as scans are only performed 
on surface level. The data generated from these scans are still generic in 
value and are not categorized to specific parts. Consequently, the automation 
involved in such a process is limited to clusters of points and any meaningful 
information retrieved from the Boolean set would still have to be further 
analyzed by human experts. In the effectiveness of checking for construction 
compliance, it is only able to “provide geometric property for dimension 
related checks” (Shih & Wu, 2005) which is only effective up to LOD 200 
representation of geometry (NATSPEC NBP001, 2013). The authors 
acknowledge these limitations by stating that it “only illustrated its 
usefulness in solving one single construction aspect which is the reversed 
working process of design verification by as-built data” and further specified 
the limitations in function due to factors in data manipulation requiring 
manual interaction. (Shih & Wu, 2005) 
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5.1.2 Automated floor plan reconstruction from Point clouds 

In another research project exploring the viability of automated 3D models 
of interior spaces using the point cloud method (Budrion and Boehm 2010), 
focuses are on sweeping techniques. This technique aligns points to flat 
planes which are then intersected to create a floor plan. The method is quite 
effective in automating the process of scanning to floor plan but still does 
not identify individual features of a structure and planar features such as 
windows may be incorrectly identified as walls as a result. The paper 
includes in depth information about the segmentation techniques and goes 
well in depth to the problems and solutions encountered for each method. 
The result is a system that fully automates the conversion of a point cloud to 
a floor plan with wall heights. This still isn’t effective enough as the overall 
level of detail remains at around LOD 200. Noisy data and very precise 
geometry is filtered out during the sweeping process so the accuracy of more 
complex forms will not be converted correctly. However, this technique will 
be useful in creating a floor plan for when the original design models are no 
longer available (Budroni & Boehm, 2010). 

5.1.3 Extracting shape grammar from 3d point clouds 

The missing aspect of these two studies is the differentiation of individual 
parts of a building; to understand how the feature exists in the form of curves 
and ratios. The paper “From Point Cloud to Shape Grammar to Grammatical 
Transformations” (Countinho, et al, 2013), formed a potential solution to this 
problem. By utilizing a pre-constructed dataset of ‘Shape Grammar’, smaller 
compositions of form can define larger features, which can then be 
constructed in place of the associated point clusters. The issue with this 
approach is that a predefined set of shape grammar must be created before 
any sections of form can be classified. The study was performed with 
Portuguese architecture based on the shape grammar written by Leon 
Battista Alberti in classic architectural treatise “De re aedificatoria” (Alberti, 
1485). By then converting Alberti’s work into a modern shape grammar 
definition (Stiny & Gips, 1972) it could then be applied on the 3D structure. 
In modern buildings, not all structures follow the same rules and it is 
difficult to have one universal shape grammar. The paper mentions this 
limitation “The code to automate the shape recognition proved to be helpful 
but improvements are necessary, namely the generation of mesh surfaces 
directly from the PCM in a complete automated way” (Countinho et al, 
2013, p.662). 
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6. Case Study 

6.1 INTRODUCTION 

To preface, machine learning is used as it can quickly identify patterns and 
learn shape contexts quickly and automatically. The method structure will be 
as follows; 
 Artificial Preparation: Randomly generate models with simple features, 
apply simulated points on interior surfaces and categorising the points based 
on collided features. Point clouds are usually generated from LIDAR 
scanners, which rapidly fire laser beams and records the distance and angle 
of projection, a similar technique is used in artificial preparation to replicate 
the behaviour of LIDAR scanners. 
 Machine Learning: Import created point databases from artificial 
preparation, train the neural network with the artificial point databases and 
evaluate the accuracy with uncategorised point clouds. 
 Compliance Checking: Export categorised points, perform compliance 
checking comparisons with original models and run real point clouds 
through the neural network 

Figure 1. Method Diagram 

6.2 TESTING ENVIRONMENT SETUP 

For a neural network to be able to create inferences, it requires to be trained 
on a range of data that will encompass all different types of features it will 
encounter. This data needs to have the same structure for the remainder of 
testing. Since categorised point cloud data is difficult to source, especially 
those with the same data structures, it will be artificially generated for 
consistency and ease of training. The time scale of this project is limited to 
several weeks so the time training allocation to machine learning model is of 
greatest priority.  
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Figure 2. The Pointnet Architecture  

6.2.1 Introduction to Pointnet 

The architecture created for the model is using the Pointnet Architecture 
created by Stanford researchers. The Pointnet architecture is used as it has 
the best effectiveness in differentiating objects within a 3D array. The 
structure uses unordered lists, local and geometry contexts for the 
interferences. Pointnet uses ‘Tensorflow’ for the majority of its code, which 
is a python library. The base inputs for the Pointnet architecture is a simple 
(x,y,z) database array. For that reason, the output from the initial data 
generation should be generic and not contain additional data such as RGB 
values. Many point clouds are produced in a HD5 data format, which 
includes images mapped on points to give them a colour value. Instead the 
data for this project will be produced in Rhino Grasshopper, as it can be an 
automated process. 
 In order to keep things simple, the type of features is typical of a room. 
This includes; Walls, Windows, Window Frames, a roof, a floor and a door. 
These features are put into a dictionary of categorical value, which can 
represent the feature by a number. The specifications of this room are 
constrained to certain bounds, but the value is generated randomly using a 
seed. These features are organised into a simple value to represent the 
category that a point is touching. After the room is generated, the point 
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within the middle of the room will extend outwards in random directions is a 
spherical projection. The amount of directions is set to the amount of points 
required per dataset. After these points are created, they are matched into the 
categories they are touching, a simple point could be (x,y,z,c) where c is the 
categorical value. These points are then exported into a csv format to be read 
by the Pointnet architecture. After this has been repeated many times, it can 
then be trained for several epochs. 

6.2.2 Room Generation 

The rooms are generated using generated floor plans which have several 
constraints. The door is placed randomly on one of the rectangles walls and 
is also constrained to a maximum ratio 1/5 of the wall length. Window 
frames have a thickness between 50 and 100mm and the window to wall 
ratio is calculated based on the bounds of the lower and upper walls. Glazing 
thickness is set between 10mm to 50mm and is always inside the window 
frames. The height of the window is set randomly, and the upper and lower 
walls are set based on the height constraint of the room. After all features of 
the room have been generated, they are merged with {Boolean union}. 

6.2.3 LIDAR Simulation 

Using the merged form of the room, a bounding box is created so a center 
point can be extracted from the object. From the center point, a sphere is 
created, and points are randomly placed on the sphere surface. This allows a 
line to be drawn from the bounding box center outward in the direction of 
the points on the sphere. This simulates the behavior of a stationary LIDAR 
scanner emitting laser beams. 

6.2.4 Point interception 

After the lines are created from the Lidar simulation, an intersection is 
performed between the lines and the original geometry of the merged room 
features. This creates multiple intercepting points as there is an outer and 
inner side to a feature. For the purposes of this case study, only the interior 
points are selected as they represent the constraints of a LIDAR scanner.  
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Figure 3. LIDAR simulation point interception. 

6.2.5 Point Categorisation 

After the points are generated, they are compared to the individual features 
of the room and tested for collisions. It is assumed that if a point is colliding 
with the face of a feature, it is part of the point group that will recreate the 
feature. This is repeated for all features, and then combined to create a list of 
points touching each feature. Very rarely, a single point can be categorized 
as touching two features when the intercepting line touches the edge between 
two objects. For consistency, these instances are removed to avoid problems 
during training. 

6.2.6 Point Database 

The database of points is created with a csv (comma separated values) file 
format, the table of points have 4 columns, x, y, z (which defines the 
location of the points) and c (The category of the feature). When all points of 
a room have been written to the csv file, the next seed generates a new room. 
A new line (Line feed) is written to the csv to separate between the different 
room data. 

 
Figure 4. Categorised point clouds. 
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6.3 TESTING 

The first iteration of this process was with a point set size of 1000. The 
initial test did not yield a great accuracy and the algorithm could not 
recognise more than two features. There were additional issues within the 
model generation to cause the point set size to exceed the set number of 
1000 points, this was revised afterwards to lead to the second iteration.  
 The second iteration was still tested with a point set size of 1000. The 
training script was revised to handle an infinitely sized database, testing still 
did not yield substantial results. An additional problem appeared where the 
loss becomes static and drops to a local minima. This was fixed by 
employing Pointnet’s custom loss function as opposed to Tensorflow’s built 
in loss function. 
 The third iteration was tested with a point set size of 10000. The training 
script finally started to show results, attaining an accuracy of around 95% 
after 20 epochs. The training session was run to 200 epochs, but still yielded 
the same results comparable to 20 epochs. 

Figure 5. Model visualisations Epoch 0 – 9  
 No further revisions were made on the training sections, the only 
additions were to add a function for saving the trained models and a function 
for testing and evaluating an uncategorised dataset afterwards. 
 To test the accuracy and applicability of the trained model, a new generic 
data set without categorical values were run through the neural network. 
When evaluating the test data it produced accuracies of over 90%. 
 The third section of testing Is the compliance test. During the generation 
of the data set, a 3D model was saved of the respective model. After a point 
cloud model has been processed through the feature detection, it is then 
reimported into the rhino grasshopper environment. Using a model 
reconstruction script, the original geometries can be compared to the 
reconstructed models from the point cloud. This represents the compliance 
checking process, as any irregularities are flagged and shown on the system. 
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6.3 COMPLIANCE CHECKING SYSTEM 

The reconstruction technique aligns the angle of the point cloud to the 
original geometry, and then creates bounding boxes purely by the points 
within a certain category. Bounding boxes are defined by three domains in 
each dimension (x,y,z). When compared to the bounding box of the original 
features, a compliancy calculation can be performed by the sizes of domains. 
For example, a door is compliant when the size of the x and y domains of the 
reconstructed object are the same as the original domains. For a room this 
technique is sufficient as there is a limited amount of geometries, however, 
in large scale this becomes less accurate. If the compliance checking method 
is extended to a larger scale, the reconstruction technique needs to separate 
the different kinds of features as well as each feature itself. As an example, 
three doors on the same x or y axis will have the same bounds as two doors 
provided that the extents are the same. This becomes an issue as the 
compliance technique will falsely flag it as correct whereas it should be 
incorrect. Another issue that the reconstruction technique has is that point 
cloud collisions are usually planar. This is an issue as compliance checking 
must be performed on all dimensions of a feature. A door could be flagged 
as compliant if it is the right height and width but could be off by thickness. 

Figure 6. Reconstructed door(red) made from points(green) tested against original 
geometry(blue) 
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Figure 7. Compliance checking output flags from Rhino Grasshopper 

6.4 REAL WORLD TESTING 

As a measure for real world testing, a 3D Point Cloud was collected using 
the Zeb Revo scanner, a handheld portable Lidar scanner. A simple room 
was scanned and processed though Cloud Compare and MeshLab software. 
Since the neural network was trained on a fixed number of points, it was 
required that the same amount of points was fed into the system for 
categorisation. The initial point cloud collected was a total of over 23 million 
points. Noise was removed in Cloud Compare, and then the point resolution 
was also reduced in the same software. After the data was exchanged from 
Cloud Compare to Meshlab, it needed to be cleaned of internals since 
interior objects and features were not included in the training data. The 
interior points were taken out manually and the point definition was reduced 
once more to around 10 thousand. 
 

Figure 8. Collected point cloud. 
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 By running the collected point cloud through the neural network several 
findings were observed. Initially after 500 rooms were examined in the first 
epoch. The real point cloud was identified with a ceiling floor and walls. 
There were instances where glazing was forced on areas that did not have 
windows; however, no window frames were identified. Subsequent epochs 
revealed that ‘overfitting’ occurred, as the neural network identified doors on 
areas that there were none. These issues were likely due to the imperfect 
data, as the actual location of points had noise and were not of certain 
accuracy. This is likely the causation of glazing appearing in areas of flat 
planes off axis from the wall. The machine learning section could have been 
improved by feeding it imperfect noisy data from the beginning, but due to 
the limitations of software and actual data it was not performed in this case 
study. Future tests could analyse patterns in the noise or distortion and can 
be applied during the model creation or simulation. 

Figure 9. Real point cloud evaluated by inference system. 
 
 

7. Discussion 

This research project has investigated the ways machine learning can be used 
with 3D point clouds to check the geometric integrity of a structure or 
building. The study has created a working pipeline which has shown the 
effectiveness of the techniques employed. The initial findings have shown 
that a neural network is capable to learn the features of a room or structure 
and create classifications based on unclassified data. This classified data can 
then be compared to an original geometry to prove if a feature is compliant 
and if there are any issues present. This approach is highly effective in 
comparison to human centered approaches as it can perform a holistic 
evaluation rather than focus areas that a traditional approach performs. As 
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shown in the time scale of the case study, a solution which utilizes machine 
learning can be adapted in a short time scale and be improved over iterations 
rapidly. The implications of using machine learning is that over time, the 
system does not need manual intervention to improve accuracy and 
effectiveness. If developed and placed within a workflow, it can completely 
replace traditional methods and drastically improve the accuracy and fidelity 
of construction. This system can even be combined with construction 
management to prevent disparities from occurring from the beginning. 

The limitations of this study are that it has not focused on the initial 
data collection techniques. Large scale 3D Point cloud scanners are currently 
immobile and are limited to one perspective of scanning. This is an issue as 
the system requires a high level of detail from the point cloud before it 
becomes effective. This problem could be resolved by employing new 
emerging techniques such as UAV and handheld collection systems, that can 
scan from multiple perspectives. Since the trained data was digitally 
generated and not collected, it does not serve as a full product or 
representation of a real training sequence. Additionally, in order to reduce 
the required computational power, the scope of a dataset was reduced 
relative of a collected point cloud. However, as a concept it proves that it is 
possible for a neural network to learn the shape grammar of defining 
features.  

This study will benefit construction and planning industry as it more 
accurately ensures the fidelity of construction. The workflow process can 
also be automated and provides high potential in further development. 
Furthermore, this study has also explored the potential of 3D point clouds 
and the segmentation techniques in machine learning, which can have other 
applications within building and feature analysis. Additional research also be 
performed on the flagging and analysis system, which can be developed to 
perform more complex compliance checks. 

8. Conclusion 

Building compliance should be a top priority as it involves the safety of 
society and ensures the delivery of a basic human need. There are several 
challenges in creating a compliance checking system. As architecture 
designs become precedingly more complex, it is essential for buildings to be 
structurally sound. With emerging technologies such as machine learning we 
can better regulate the construction process and ensure the quality of the 
delivered product; however, machine learning provides an efficient and 
highly scalable solution during or after building construction. As 
demonstrated in this research, in a short scale of time existing machine 
learning technologies were implemented into new applications not 
previously experimented with. The machine learning in this instance proved 
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to be effective in identifying the features of a building in a 3D point cloud, 
which by reconstructing into the original geometries, can amend 
construction issues by comparing the two models. The reconstruction 
technique is simple but already proves the effectiveness when outlining 
disparities between inferenced geometry and original geometry. By further 
developing this pipeline it could be easily developed into industry 
workflows, ensuring better safety in the built environment. The ongoing 
development of new construction compliance systems should be essential to 
maintaining the security of buildings and the trust of all inhabitants of 
modern buildings. 
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