

REAL TIME CROWD FLOW

Real time interactive simulations to inform decisions in
wayfinding design

E.LI,
UNSW, Sydney, Australia
Flim.edenli@gmail.com

Abstract. Real-time simulations enable the freedom of letting the
computer create, whilst having the user control the input data. This
creates an emphasis on real-time technology as it solves the problem of
having the designer devote time to execute multiple roles of animating,
calculating and finalizing. This paper explores the potential of such a
system specifically within the context of crowd simulations. Dynamics,
accuracy and adaptability are key aspects of crowds, and as a resultant,
modern approaches are often very computing heavy and tedious. The
research aims to create a system that executes a crowd simulation via
procedural means within the game engine, Unreal Engine 4, so that it
responds to user inputs, such as adding doorways in real time. This
investigation ultimately challenges the notion that simulations is just a
tool for post-design, but rather, it should be considered throughout the
whole production. It encourages new design ideas that are validated via
a trial and error habit due to the nature of real time possibilities. Further
exploration of real time aspects could lead to newer and faster design
methods and systems.

Key words: Real-Time, Procedural Simulation, Crowd
Simulation, Interactive, Dynamic

2 E.LI

1. Introduction: (Research context and motivations)

A truly dynamic simulation, that is in real time (in calculation and rendering)
will encourage faster workflows that maintain a high level of detail at no
expense of extra effort. It enables the simulation to be run parallel to the design
process unlike its current method of restarting at every new iteration. Meaning
that at every client request, changes can be instantaneous whilst maintaining
a polished look. Just like in video games, there is no practicality, if every time
the player decides to do an interaction, it causes the need to re-load up to the
point of change. Hence, architects should not have to experience the shortage
of a more efficient workflow.
Crowd simulation is a digital representation of people’s movement within
spaces, often used to prove whether the efficiency of spatial design. It is a
collection of humanoids or ‘agents’ that have specific characteristics assigned
to them to best represent human movement. Human behavior is often
unpredictable and highly prone to change relative to their contextual
surroundings. Having a real time simulation is perfect application as the user
can constantly test different designs amongst a constantly adapting crowd.
Executed inside Unreal Engine 4, the project is unlike generic simulation
programs as game engines prioritize playability/ smoothness over realism,
which implies the results to not be taken seriously. But this paper considers
those impressions, taking advantage of this ‘con’ and help realize that game
engines are powerful to perform tasks kin to those of ‘specialized’ programs.
Throughout the paper, it should be noted that the objective of the research is
not to solve a problem, but rather to improve on a skill/ task that is already at
a high level of production.
Ultimately the journey in developing a real time crowd simulation can be
considered just a small peek into the potential of developing real time in the
industry.

2. Research aims and objectives

The aim of this research is to investigate procedural simulation techniques to
create a dynamic virtual environment that can model scenarios in real-time as
well as be interacted by the user. The whole research could be broken down
into multiple streams of research on its own, so in order to keep the project
succinct, project aims, and goals must be established as guidelines for progress
and success.
The real time aspect is the most important element of this research paper.
Many crowd simulation programs already exist; they are all a high caliber
however; they all lack the essence of real time. In order to set a good standard
of real time, the agents and the scene must be instantaneous in the reaction to

 REAL TIME CROWD FLOW 3

the user input. Not only that, but the system must not experience any decrease
in render time or any buffering when new elements are introduced.
The next most important aspect is the crowd itself. Its ability to perform
human like movements, and to be able to perceive items based off human
instincts like sight. Finally, the crowd requires the ability to identify certain
elements of the building, this is key in constructing a crowd that is connected
to its own surrounding context, which is important for realism.
The final step, if time allows, is to test the system amongst multiple users, and
observe how real-time affects their workflow, design decisions and whether
they incorporate a trial and error like mindset. There is also curiosity on their
mindset on the system, do they trust it? Do they think its applicable in real
life? Is it easy to use?

3. Research Question(s)

In What ways can real-time interactive simulations be developed for use in
wayfinding design decisions?
This research is both an investigation of the development of a system and the
impacts of it on workflow. The biggest question is the notion of real time and
its necessity in the progression of programs in the architectural field.
How can procedural simulation techniques enhance interactivity in agent-
based virtual design environments?
Why are architectural programs still so stagnant when computing power are
increasing at an incredible rate?
What are the effects of using a game engine and classifying it as a simulation
tool? Is it reliable? Is it valid? Is it accurate?

4. Methodology

Methodology is the ‘cycle’ of having a problem or question presented,
analyzed, followed by theorized solution, execution, interpretation and then
repeated (Gabel, 2017). The question at hand is how to create a real time
interactive simulation that will help realize the full potential of instantaneous
programs and its assist in the architecture field. The execution is in the
development of a real time interactive crowd simulation which was proceeded
in UnReal Engine 4 (UE4) with the assist and BluePrint(C++). The
interpretation is qualitative, it is not a question of ‘does it’ work but rather
‘can it’ work as the full potential of this system requires a much bigger
investment of resources available.
Throughout the research, there will be multiple iterations, each one focusing
on a specific element to create a successful system.

Iteration 1 – Agent pathing and obstacle avoidance
Iteration 2 – Dynamic scene and interaction

4 E.LI

Iteration 3 – Advanced AI perception and reaction
Iteration 4 – Real time texturing and rendering
Iteration 5 – User testing

In more detail, models and contexts will be developed in Rhino3D, a NURBS
modeling program that is then exported into UnReal. Inside UE4, the models
will be imported into its scene where all the items are centralized into one
place. Then BluePrint will be used to apply the ‘personalities’ or attributes to
the scene. The question at hand is how to implement certain instructions and
quantifying them into components and scripts that is understandable by the
game engine.

5. Background Research/Literature review

Modern culture and technological advances have driven our society into a
people who desire results instantaneously, whilst also at relative accuracy
and quality. As our capabilities to perform quality real time products
increases, so does its potential to be applied to architecture.

5.1. OPTIMIZATIONS

5.1.1 Nivida GPU
Nivida, a leading company in graphical development recently released a new
direction of graphic cards that they name RTX cards. In these cards, they
commercialized a feature named ‘Ray Tracing’. This feature has been
around for many years and is considered the ‘holy grail’ of rendering, as it
accurately calculates reflection and lights. Up until now, it has always been a
restriction because of computing power (Caulfield. 2018) but, it is important
to note Nivida’s push for this feature their understanding of the potential of
attacking such a computing heavy task in real time, as they recognize it as
the future.

5.1.2 Industry Standards
In Architecture, the bridging of the digital to creating a seemingly realistic
representation is key, in its ability to prove validity and vision. In the context
of crowd simulations, for them to be viable, they must be able to render
convincing scenes whilst also maintaining the integrity of the behavior of the
agents (Lozano. 2008. Pg1). Crowd simulation’s biggest challenge is the
large computing resources needs to be devoted to creating a finessed product
due to the sheer amount of data and processing needed to represent each
agent. Lozano in his article tries to combat this lack with hardware, linking
up multiple computers in a server like manner, to produce computing power
in a net amount. Whilst this system deemed effective, it is was a very costly
experiment that also gave them no advantage besides speed. This paper
focuses on the software and the switch to a game engine instead. As

 REAL TIME CROWD FLOW 5

explored before with the addition of Nivida support in Unreal Engine, it
allows optimized instantaneous renders and simulations all at the expense of
a single device.

5.1.3 Unreal Engine
The choice of using Unreal Engine to host the real time simulation was quite
an easy decision that was both logical and based off background research.
Firstly, as explored in 5.1.1, Nividia has been developing with Unreal for
many years and the software takes advantage of any new release Nividia has.
There is access to the PhysX (Nividia) system which a physics engine that is
optimized to any Nivida GPU, and it helps aid any form of graphical
processing that includes Artificial Intelligence, Animation, Scripting and
other forms of processes. The introduction of live Ray Tracing, though not
used in the duration of this paper, proves that it is a future proofed product,
that is only prone for constant development. The default AI/ agent system is
quite simple, but their ways to introduce complicated behaviors, only at the
expense and knowledge of the developer. Unreal also released a new feature
called Hot Pixel Streaming, which essentially is hosting the whole program
on a server, allowing clients to instantly see the project anywhere with an
internet connection. This creates even more emphasis on the notion of real
time as now, there is instant access anywhere, hence showing the future
proofing and advantages of Unreal Engine 4.

5.2 PHILOSOPHY AND METHODOLOGY

5.2.1 Simplification of complexity, to scripts
There are three main segments that define the term ‘procedural’. Algorithmic
mainframe (where rules and definitions are created), variable input (where
the mainframe receives data), and output (product that is created when the
variables run through the definitions), which they work together to create a
loop. Relevant to architecture, designers can finally create scenarios that can
be updated, nearly instantaneously when a client desires a variation.
 Zeeshan Bhatti in his report Procedural Animations of 3D Humanoid
Characters Using Trigonometric Expressions uses procedural animation to
explore the unique application of procedural animation into the observation
and creation of human movements in a digital space. This report has no
direct mentions of architecture, but the philosophy and methods of their
research still holds as Bhatti explores the familiar idea of ‘real time’ and
realism. “Key frame being a traditional approach takes a huge time to render
a realistic looking animation” (Bhatti 2016 p.2) expresses the need to use
newer methods to rpelace tedious tasks that requires time and resources. He
takes a mathematical approach, resulting in his team to firstly deconstruct
every human movement, and translating them into formulas. It represents a
logical and editable medium that can change the ‘algorithmic mainframe’, in

6 E.LI

only a few lines of code. This is extremely efficient for people who need to
constantly refine their product, to achieve the optimal outcome. However,
with specialization, comes exclusiveness of the system, meaning only skilled
developers can understand the mainframe, whilst other users are restricted to
the surface level elements. A big application from his research is the logic
behind using equations over, lines of code. Rather than using a long loops of
‘ifs’ and ‘when’ statements to create a loop script, a simple equation such as
“ f(pelvis) = sin (T x vM x O) x wB” (Malik 2016 p.2) can serve the exact
same purpose but in a much simplified form, supporting the notion that there
are multiple ways at reducing elements.

5.2.2. Creative Application of procedural ability
A creative application of procedural workflow can be seen in Procedural
rhythmic character animation: an interactive Chinese lion dance by Tsai Yen
Li. He created a digital lion dance, with the input being musical beats and
procedural elements to create parameters for movement control. His report
affirms the concepts of Bhatti’s report in that they first break down essential
components and then represent them through either coding or math. He and
his partner recognized the diverse applications of procedural workflows, and
instead of using it for data and engineering, they used it for an art form
(dancing). Li’s biggest deciding factor to use this style of workflow was his
discovery that not only was it fast, but it was consistent. Having a mainframe
that he added input to, meant that results were always like each other due to
them having the same base. It makes logical sense for them, as a lion dance
performance requires multiple human that are different but must be within
the restraints of human capability. Regarding to architecture, taking the
dance moves as metaphor to client changes means that changes can be
consistent to its nature, but suited for the change.

6. Case Study

“Scientific research often necessitates the usage of middleware for proof-of
concept implementations. In computer graphics, rendering engines are a
type of middleware used for such a purpose. For real-time rendering,
however, rendering engines often do not provide all functionality that is
required, as in real-time, a certain degree of user interactivity aside from
graphics is necessary, or can be the center of research.” (Wimmer .2008.p. 2)

This project is not aimed at completing a fully functioning product but create
a system that will encourage people to see and understand the potential of such
a system. Creating a real time simulation from scratch with the base of Unreal
Engine requires learning with the consideration of adapting to the systems
base nature. This case study explores the process of the creation of the
simulation, whilst also pointing out the pro and cons.

 REAL TIME CROWD FLOW 7

6.1. EARLY TESTING AND EXPERIMENTS

6.1.1. Cinema4d
Cinema4d is designed to compute large amounts of data due to its strength at
simulating particles and physics. This makes it a strong candidate to host the
real time simulation especially since there is the ability to use a plugin named
‘X-Particles’ which enables the user to code in Python, providing more
freedom. However, upon experimenting, it proved itself lacking for the task,
due to it not having real time rendering. In other words, regardless of how
good the simulation is, there still needs to be long periods of time needed to
devote to rendering.

6.1.2 Houdini
Houdini is a procedural animation program that recently released the function
to directly line to Unreal Engine 4. They provide the ability to create assets
that hold procedural properties, meaning that whatever object the user
produces, the same properties will follow. This results in consistency in
production, which is great for Unreal Engine, as the user can constantly create
new elements that are all consistent with properties. This in application to
crowds, implies that no matter the variety of agents produced, they can all
possess the same movement style and other attributes. However, Houdini has
a steep learning curve due to how in-depth the program is. Even with three
weeks devoted to learning the program, it was still incredibly hard to learn
enough to produce the desired result for Unreal Engine.

6.2. MODELING AND CONTEXTUALISING
For any simulation to be functional, they first need to be able to adapt to any
model or building provided. This first step is crucial in making sure all the
elements are compatible and true with the system in Unreal.

6.2.1 Rhino3D
Models and building context were created inside Rhino3d. Rhino is a favoured
choice as it accepts a wide variety of file types which is ideal for client
deliveries, and the easy user interface allows the designer to be able to quickly
optimize the scene. It became apparent that with some programs, they
experience problems dealing with complex meshes, and with surfaces that
have a null (0) thickness. However, Rhino3d allows the user to quickly fix the
scene by finding these object types and reducing mesh definitions and adding
thicknesses to surfaces respectively. Not only is Rhino good at import and
optimizing, it is ideal for creation of geometry and ultimately offers a diverse

8 E.LI

range of file types for export as well, which is perfect for Unreal Engine and
cross program communication.

6.2.2 Collisions and optimisation
The first stage in developing a ‘stage’ for the characters to simulate on is
defining the model imported from Rhino3d for the engine to recognise it as a
building. In Figure 1, it demonstrates the automatic assignment of a ‘bounding
box’ around the scene, meaning that it doesn’t allow direct collision, but only
around it. When creating very detailed definitions of collisions, it comes with
the consequence that some paths are hard or cannot be accessed. For example,
staircases are registered as ‘walls’ rather than walkable pathways, or if there
is a small misalignment of levels, it becomes untraversable. Correct collision
parameters are very important because when a wall isn’t registered well, then
the crowd would always walk into it, as they cannot ‘see’ the collision or the
wall in front. In Figure 1, the green represents walkable paths whilst the cut-
out areas are inaccessible

6.3 BLUEPRINT
The backbone for both Unreal Engine and this research project is the node-
based scripting function called BluePrint. It can be assigned to the level in
general and or assigned to each individual agent that is represented by ‘class’
like layers.

Figure 1. Museum Context Model

Figure 2. Basic BluePrint Script Example

 REAL TIME CROWD FLOW 9

6.3.1 Agent Crowds
To create a crowd, first, there needs to be individuals. BluePrint provides the
ability to manage multiple ‘classes’ of people all at once, allowing diversity
in mass. Referencing to Bhatti’s paper, it was key that chaos and movement
can be summarised and quantified. In our case, instead of maths, we used
scripting in Blueprint, keeping workflow efficient and manageable.

6.3.2 Spawning System
People in real life do not spawn from thin air, hence the introduction of agents
must be smart and feel natural. Extra rooms are located outside of the users
view, creating the illusion the agents are spawned behind doorways. With the
use of BluePrint, spawn rate and quantity can be controlled and modified
easily. This is useful for clients who have a specific number of people they
want simulated in an environment. Due to the nature of procedural node-based
scripts, this can be done in one alteration to the values, and the script will still
run perfectly fine with no delay.

6.3.3 Collision and Crowding
The default method of navigation is defined by Unreal as ‘AInavigate’ and it
is a good system that allows the agents to traverse towards a certain location.
However, once there were multiple agents, it was observed upon crowding the
agents would stop moving due to them being unable to untangle themselves
within their logical parameters. A straight path to a location, is now blocked
by multiple other agents who do not know how to react to each other as they
all have their own instructions. Upon research, there was another method of
movement named ‘AIdetour’, and this method allows the agents to evade any
objects in their line of path, including other agents. Whilst this solves our
initial problem of the stagnating movement in crowds, it also introduced other
problem. Movement became forced and even when there is meant to be points
of crowding/ friction, the ai would find a way that is inhumanely possible to
navigate around each other. A counter to this problem was to integrate both
the default assets of Unreal, mixed in with the user defined scripts in
BluePrint. BP offers the freedom in targeting specific controls and attributes
that the default settings offer, allowing them to be altered and specified in
scripting.

6.3.4 Behaviour Tree
Behaviour Tree or ‘BT’ is the system that regulates the usage of BluePrint
which is particularly ideal in profiling characters. Rather than repeatedly
executing the same script for each character, the program can now trigger

10 E.LI

events based of ‘true’ and ‘false’ situations (Booleans). In Figure 3 the graph
represents the hierarchy of the BT. Each node under ‘sequence’ are individual
scripts that are executable based on the event defined. In this particular script,
it tells the agent to, receive target point, wait and then walk to point. When the
agent fails to execute a certain branch, then it will execute into another branch
(to the right), allowing two layers of decisions which greatly simulates human
decision making. An application of this was to fix the crowding problem
mentioned in 6.3.3 above. The moment an agent found itself to be stuck due
to crowding, they would execute another task, untangling the situation as they
all have new directions to.

6.3.5 EQS system
EQS or Environment Query System is a new experimental feature that
accompanies the Behaviour Tree system. It is classified under as Unreal’s
‘Artificial Intelligence System’ and it helps receives data from the scenario
and context around the agent. In other words, relative to where the actor is in
the scene, it can react to its relative surroundings. The human senses, whether
it be hearing, smell or the more importantly, sight, are all realistic elements
that causes people to perceive their bearings (Dutra.2014.pg1). Hence by
using EQS, it increases the dynamics of the system, adding more layers to the
realism of the crowds. An implementation of EQS in the research project is
vision perception, where the agent can only react or execute functions only if
they have a direct line of sight to their target. In Figure 4, the system returns
a green sphere when the value is true (that the agent can’t see the user)
however when it does see the user, then it will return purple, meaning it will
execute a different function. In this specific case, it shoots the command for
the agent to go towards the user, and if user is not visible, then keep walking

Figure 3. Behaviour Tree for Movement

 REAL TIME CROWD FLOW 11

around randomly. In terms of the crowd simulation, this could be useful for
simulating wayfinding and signages, where agents can only react if they have
a clear view of signage, proving the design is efficient. It also fills in lesser
considered scenarios, such as if in a dense crowd situation, are people of
shorter height able to navigate successfully around spaces when there is
obstruction. Other uses of the EQS includes the ability to virtually map out
the space around the agents, or the ability to hear or even the ability to choose
the best route based off distance, the possibilities are plentiful.

6.4 SIMULATION USAGE

6.4.1 Camera Work
Camera is a very important yet generally overlooked aspect of simulations. A
well-placed camera can both narrate the features whilst concealing faulty
productions. The default camera for UnReal engine is 3rd person, where,
positioned right behind the user character as shown in Figure 5(Left). The
most ideal angle is birds’ eye, to provide the ability to view the crowds as if
patterns from an aerial down shot as portrayed in Figure 5(Right). However,
the problem arises when roofs and high walls interfere with the clear line of
sight down. The problem was solved when the obstructing objects were
referenced in BluePrint, causing the visibility to change whenever the camera
is recognised in top view. The addition of a new camera changed the whole
simulation and its usage. The user now has visual access to all the rooms and
all the agents regardless of where the player is, which is perfect for observing
big crowds that access multiple rooms simultaneously.

Figure 5. Camera 3rd person (Left) Birds eye (Right)

Figure 4. EQS Trace example

12 E.LI

6.4.2 User Interface (UI)
As a simulation that is both user and client focused, it is important that the
user interface must be easy to interpret. The controls act like a game where
the user walks around using the WASD keys, unlike programs where they
have assigned combinations to be able to pan, rotate and zoom. The game like
nature of the system allows all three of those movements to be simplified into
one seamless navigation from a character. Spawning characters are done
through button presses and the camera is based off mouse movement. There
were attempts at being able to spawn walls and variables based on mouse
location, but it was not successful within the time frame of testing. Further
improvements, that could be implemented in the future, is an inventory
system. Where the user can simply press ‘TAB’ on the keyboard and all the
available elements like walls or columns can be displayed and dragged into
the scene. This will allow the client to instantly see the options and place them
accurately, with no time wastage.

6.5 FINAL PRODUCT

6.5.1 Functions and usability
Now that the mainframe of the system has been created, upon receiving a
building context/object file, the simulation quickly can be set up in around
twenty minutes. The only set up required for the developer, is making spawn
points, assigning pre-made scripts to agents, texturing and importing other
pre-made assets. After that, the system will be automatically rendered and able
to simulate the crowds whilst also interactable by the user, and most
importantly, all this is in real time. The user can walk around the scene in third
person, experiencing the building design from the perspective of a pedestrian,
granting the ability to identify problems from a simulated human height. They
can introduce new variables such as doorways, walls, columns, hazards to alter
the course of the crowds, who can only react upon the requirements of the
EQS system. Currently, due to the EQS system, this means the agents can only
react upon having a clear view of the new variable. The player can also change
camera view whenever, to clearly observe the patterns from a higher angle,
optimising the ability to observe and interact.

6.5.2 Testing Scene
Whilst the simulation can be performed with virtually any building, in
consideration for this paper and its purpose to prove the benefits of real time,
a specific scene was created from scratch. This scene is composed of an
imitation of a train station, airport, art gallery and a large blank room. The
train station is to prove the system works with dealing with mass crowds that

 REAL TIME CROWD FLOW 13

spawns from multiple entrances (train doors) and its purpose is to validate that
game engines can process large amount of data without stuttering. This was
successful, and the crowd was observed to navigate the corridors in a human
like manner. The second section was an airport which purpose was to simulate
a multi-process scenario. In airports, there is a process of check in, luggage
sends, bag check, security scans and finally boarding. This multi-level setup
is ideal in testing the randomness of the agents, giving them the ability to
decide which ‘booth’ to go, creating an effective test of cross pathing and
dispersion based off different waypoints. The art museum is to display random
human movement from the different interactions to artworks. Some like to
move in closer to see the painting, and some like to walk side to side to observe
clay works. This unpredictable type of movement is ideal in creating a
challenge for the ai to both replicate realistically and to solve navigation.
Finally, the blank room is simply for the user to have fun and build walls in
an open space that controls the crowds freely.

Figure 6. Modelled Scene (Untextured), Gallery (Left), Train Station (right)

Figure 7. Whole Scene (Untextured)

14 E.LI

6.5.3 User response
This section wasn’t extensively tested amongst many users especially not in a
controlled experiment context. Hence its observations can only be taken as
assumptions rather than validated evidence-based observations. Users who
interacted with the system managed to easily pick up the controls and explored
the program with no trouble. They were all entertained in their exploration of
the scene through a 3rd person character and was intrigued when they could
play with the crowd directly. Not many of them doubted the validity of the
crowd simulation, but it was interesting to observe, that before being
explained the goal of the program, most of them treated it like a game. Their
approach was very much like The Sims©, a game about simulation, but most
players approach it with an entertaining perspective, trapping the characters
and messing around with them. None of the users expressed frustration with
the flow of the system, unlike how other programs would often experience
computing lag when imputing large amounts of data. Ultimately, user
experience returned positive, and most of them enjoyed using the system
whilst most agreed they understood the potential.

7. Discussion
The goal of the research paper at its core, was not to create a fully polished
product that could replace current programs, but rather an investigation into
the benefits and application of real time elements in crowd simulations. In that
philosophy, the research was successful due the ability to create a real time
crowd simulation in Unreal. The user could effectively and easily import their
context building, create a crowd, let them simulate their navigation through
the buildings and most importantly, the user could change the design and the
crowd would instantly react with no consequence of processing and time.

The project lead to the realization that human movement behavior
may seem chaotic at first due to combination of multiple variables such as
‘where to go’, ‘what is in my way ‘or ‘where’s the fastest route’. As a
resultant, the need for simplification and ability to change was key in making
this system work. Hosting the research in a game engine was the perfect
match, as the scripting allowed for simplification of chaos, representing
movement with just components and nodes, whilst also letting them execute
variables all at once. Furthermore, the focus on real time began to really show
its colors when it introduced the freedom of input at any given time, rather
than anticipated only in the beginning. Without real time, wayfinding flow
simulations would need to be restarted every time a new input is introduced,
which is tedious and unpractical for experimental use.

Throughout the research and creation of the simulation system, there
was a heavy emphasis and consideration of the benefits of such an interactive
system on design decision psychology. Jodie Goodman in one of his
psychological articles highlights the implication of the ability to learn based

 REAL TIME CROWD FLOW 15

off error detection and correction skills and how it ultimately leads to longer
lasting (and valid) knowledge. With this notion as an anchor point, even
though the project wasn’t fully achieved nor tested amongst multiple people,
the few participants who tried the early stage of the product all expressed
interest in the product and wanted to explore the what the crowd could do via
its altered surroundings. Although they approached it more like a game (due
to the nature of a game engine) the purpose was still fulfilled. The interface
was easily understood, exploration and experimentation of outcomes were
encouraged, and ultimately, they all showed interest when they could see the
crowds move according to what they did to the surroundings and constantly
wanted to interact with it.

Overall, the project worked a lot better in some areas whilst
expectedly lacked in others. It paved and revealed its potential in the future if
more time and testing were available. There were many wanted but
unexplored ventures in this paper, such as Virtual Reality (VR) and Pixel
Streaming. UnReal Engine 4 is very well optimized for VR, initially the
research was planned to implement HTC VIVE, a headset that is also paired
with controllers that allow users to both view the environment and interact
with it without a keyboard or mouse. The benefit of VR is to literally set the
user in the shoes of the agents. Letting him or her see what the agents would
see, giving the ability to identify problems based off the agent’s point of view.
This includes sight of signage, anxiety from personal space being
overcrowded, or even just the unsightly feeling of seeing so many people in
one space. On the other hand, Pixel Streaming is also a new experimental
feature of UnReal, and it provides the ability for the scene to be hosted on
servers. This results in the accessibility of the program virtually anywhere
with a strong internet connection. Not only that, but clients could run the full
program even on outdated hardware, because everything is hosted on the
server and is essentially just streaming data on par to that of a video. This is
again, an extremely nice touch to the idea of ‘real time’ as it is instantaneous
access to the program, anytime, anywhere.

Ultimately, however, in its most perfect form, the system could
change the notion that simulations are an ‘add on’ to building design,
something that is only performed after the building is digitally produced. But
instead, it could become a dualistic design method, where the designer could
integrate both simulation and construction, where the simulation would run
completely through the whole creation process, informing design changes in
real time and validate those choices.

8. Conclusion

How can the element of Real Time impact and shape the user experience, time
investment and the design itself when working with such a highly chaotic
study such as crowd simulations?

16 E.LI

To cut through the mass data and chaos, first and foremost requires speed and
responsiveness. If the program is slow, then it will decrease user morale and
increase frustration. A game engine solves this problem instantly, giving the
user instant response upon input, simply due to the power of the nature of
Unreal Engine. Not only that, but now, users are encouraged to constantly
make trials and errors, uplifting a sense of entertainment whilst also serving
the exact purpose of conventional programs. Whilst currently, the project’s
crowd simulation is nowhere near as realistic as other programs such as Mass
Motion, what was achieved in such a short amount of time amplifies the
potential of the system and proves that technology is not the issue now, but
rather the user himself.
So, while technology is already at an incredible level, and will continue to
increase, why are we still limiting ourselves into a world of stagnation and not
delve more into real time?

Acknowledgements
This project was made possible through the support of UNSW built environment, BIM
Consulting and Architectus.

University mentions Nicole Gartner, Hank Frausler, Yannis Zavoleas, Cristina Ramos, Nariddh
Khean and friendly peers

Big thanks to Ali Siddiqui from BIM Consulting for help in the direction and supervision of
this project.

References

Wimmer, M.: 2008, Penta G- A Game Engine for Real-Time Rendering Research,
Computergraphik und Algorithmen, Vienna, 1-30

Zhou, S. and Cai, W. and Chen, D. and Luo, L.: 2019, Crowd Modelling and Simulation
Technologies, ACM Transactions on Modelling and Computer Simulation, 1-6

Figure 7. Final Scene, 3rd Person (Left), Birds eye (Right)

 REAL TIME CROWD FLOW 17

Dutra, B.T and Priem, G. and Calvalcante, B.B and Creto, V.: 2014, Synthetic Vision-Based
Crowd Simulation, Reactive vs Reactive Planning approaches ,1-4.

Ullrich, T. and Schinko, C. and Fellner, D.W.: 2010, Procedural Modelling in Theory and
Practice, 18th International Conference In Central Europe on Computer Graphics,
Visulization and Computer Vision, EuroGraphics, 1-20

Lozano, M. and Morillo, P. and Orduna, J.M. and Cavero, G.V.: 2008, A new System
Architecture for Crowd Simulations, Journal of Network and Computer Applications,
Elsevier, Spain, 1-5

Macedo, J.: 2004, International Journal of Production Research 42(17), 3565-3588. Unified
Structural- Procedural Approach for Designing Integrated Manufacturing System

Caulfield, B.: 2018, “What’s the Difference Between Ray Tracing and Rasterization”.
Available from: Nividia < https://blogs.nvidia.com/blog/2018/03/19/whats-difference
between-ray-tracing-rasterization/>(accessed 26 November 2019).

Haines, E. and Moller, T.A.: 2019, “An Introduction To Real-time Ray Tracing”. Available
from: Apress < https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-
time-ray-tracing/16559492/> (accessed 25 November 2019).

Bhatti, Z. and Abid, H.: 2016, Procedural Animation of 3D Humanoid Characters Using
trigonometric Expressoins, Bahria University Journal of Information and Communication
Technologies, Pakistan, 1-7

Barron, J. and Sorge, B. and Davis, T.: 2001, Real Time Procedural Animation of Trees,
Clemson, 1-10

Fewings, R.: 2001, Wayfinding and Airport Terminal Design 54(2), Journal Of Navigation,
177-184

Raman, D. and Crawford, E. and Wu, Y.: 2013,Wayfinding in the Rail Environment:
Technology and Behaviour Review, CRC for Rail Innovation, Australia, 2-13

Weiss, A.: 2013, Museum Signage Design and Implementation, Graphic Communication,
California, 1-4

Hughes, K.:2015, “Museum and Gallery Wayfiunding: Tips for Signage, Maps and Apps”
Available from: The Guardian < https://www.theguardian.com/culture-professionals-
network/2015/aug/25/museum-gallery-wayfinding-tips-signage-maps-apps/> (accessed 24
November 2019)

https://blogs.nvidia.com/blog/2018/03/19/whats-difference%20%20%20%20between-ray-tracing-rasterization/%3e(%20accessed
https://blogs.nvidia.com/blog/2018/03/19/whats-difference%20%20%20%20between-ray-tracing-rasterization/%3e(%20accessed
https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://www.theguardian.com/culture-professionals-network/2015/aug/25/museum-gallery-wayfinding-tips-signage-maps-apps/
https://www.theguardian.com/culture-professionals-network/2015/aug/25/museum-gallery-wayfinding-tips-signage-maps-apps/

	1. Introduction: (Research context and motivations)
	4. Methodology
	5. Background Research/Literature review
	6. Case Study
	8. Conclusion
	Acknowledgements
	References

