
THE INTROSPECTION OF DEEP NEURAL

NETWORKS WITHIN A PARAMETRIC MODELLING

ENVIRONMENT

Towards Illuminating the Black Box

N. KHEAN,

University of New South Wales, Sydney, Australia

nariddh97@hotmail.com

Abstract. Machine learning has yet to make a significant impact in the

field of architecture and design. However, with the combination of

artificial neural networks, a biologically inspired machine learning

paradigm, and deep learning, a hierarchical subsystem of machine

learning, the predictive capabilities of machine learning processes

could prove a valuable tool for designers. This potential is the driving

factor for many machine learning frameworks within design platforms.

However, they fail to address the complexity of machine learning, as

well as the inherent knowledge gap between the fields of architecture

and computer science. This research proposes a method to lessen that

gap, through the creation of a teaching tool, made specifically for

architects and designers. Within a parametric modelling environment,

this research develops a framework to express the mathematic and

programmatic operations of neural networks in a visual scripting

language. It will be developed within Grasshopper, and made almost

completely of basic Grasshopper components. Every operation within

neural networks will be segmented into their most basic expressions and

parameterised. This provides an intermediary between machine

learning and design, which will hopefully facilitate a greater presence

of artificial intelligence within architecture.

Keywords. Machine learning, neural network, framework, supervised

learning, parametric modelling environment

2 N. KHEAN

1. Introduction: Research Motivations

Machine learning (ML), a branch of artificial intelligence, has been the driving

factor for hundreds of computational processes in almost every large company

(Biewald, 2016). However, the relevance of ML spreads far beyond that of the

major corporations. Transportation (autonomous vehicles and aircraft

autopilots), communication (spam filters and email prioritization), and

education (plagiarism detection and optical character recognition) are

instances where ML is already a significant aspect of mainstream operations

(Narula, 2017).

The study of ML already has a long and exciting history (Sardina, 2017).

Yet, only recently has the topic become a reasonably mature area of computer

science (Sardina, 2017). Among other factors, the increase of speed and

efficiency in parallel computing (Kelly, 2014), and the rising accessibility of

big data (Kelly, 2014), has provided the perfect foundation for innovation in

the field of ML.

However, considering the advancements and successes of ML algorithms,

why isn’t there a greater presence of ML within design? Only sparingly have

ML algorithms been applied in the field of architecture (Phelan, 2016), and

where they have held no influence over the design process itself. Yet, ML

algorithms have the potential for resolving prediction problems, categorising

vast quantities of data, and modelling for optimisation, and this suggests

reasonable credence for ML applications in architecture.

Accordingly, this research examines the current ML frameworks within

the parametric modelling environment, Grasshopper. This research aims to

develop an original framework, made specifically as a teaching tool for

newcomers in the field of ML. By utilising an action research methodology,

an ML framework will be developed iteratively, with a continuing goal of

maintaining an introspective quality, for maximum transparency and

increased effectiveness as a teaching tool.

2. Research Aims

The aims of this research are twofold: to develop an ML framework within

the parametric modelling environment, Grasshopper; and to do so in a way

that is completely transparent for those attempting to comprehend their inner

workings.

The overarching goal is to contribute to a greater presence of ML directly

in the design process. As such, the initial objective is to simply create a

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 3

framework, within an environment used by computational designers, and

potentially architects. A framework can be described as an abstraction of a

computational process, which can be altered to suit a multitude of

applications. Thus, the original intention is to develop a tool for designers

capable of ML.

The second objective is to combat the pre-existing tool’s opaque, internal

operations. The current frameworks that exist within Grasshopper, are

enclosed components, offering little to no introspective quality. As such,

unless the computational designer is also trained in ML, it is difficult to yield

sensical results. This research aims to remedy this through the development

of a framework that is completely transparent. To newcomers in the field of

ML, the combination of the framework’s transparency, and the fact that it is

built within an environment that they are familiar with, enhances the potential

for their understanding. The outcome is an intermediary between ML and

design.

3. Research Questions

At the commencement of this research, there are several questions needing

exploration. Initially, investigations pertaining to the multitude of ML

algorithms and their functions are needing assessment to determine the most

appropriate to begin with. What ML algorithms exist, and what are their

individual functions and purpose? Furthermore, the question of their

functionality leads to studies of the underlying mathematics. How does the

algorithm work? And how can one translate these mathematics to

computational logic?

Subsequently, this highlights that beyond simply understanding, is the

need to effectually convey heuristics through computational operations. How

can one explicate information effectively, specifically to a design audience?

Using an environment familiar to computational designers, and potentially

architects, how is clarity achieved though the visual scripting language?

Furthermore, the iterative research process generates questions about the

research process itself. By what method can the developed framework be

proved to be accurate and functional? How can one assess the effectiveness of

the framework as a teaching tool for computational designers? And to what

extent does the framework deliver on clarity and transparency for the

algorithm’s internal operations?

4 N. KHEAN

From these numerous queries, the research project has narrowed the

exploration to the following key questions:

1. What knowledge is required to understand the operations of ML

algorithms?

2. What strategies can be utilised to effectively teach computational

designers about the function of ML algorithms?

3. How can the key processes be implemented within a computational

design environment with the utmost transparency?

4. Methodology

The methodology of developing an ML framework within Grasshopper adopts

an action research approach that is characterised by iterative progression.

“Action research has been described as a reflective and experimental model

of inquiry” (MacIsaac, 1996). This cycle, through the conceptualisation of a

problem, the action towards its resolution, and an evaluation of that action,

drives this research.

This project is further divided into three sections: theoretical research,

implementation, and validation.

Figure 1. Flowchart of research methodology.

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 5

A holistic understanding of the fundamental mathematics of ML

algorithms is obtained during the theoretical research phase. This is further

segmented into two categories: basic operation, and optimisation and

regularisation techniques. The comprehension of the basic operations is

imperative as they are the key processes that everything else is built upon. On

the other hand, the research of optimisation and regularisation techniques is

almost optional. By analysing advancements in the field, these techniques will

be judged on their potential to be additionally included in the proposed

framework.

Gathering the algebraic rationale behind each concept, the next stage was

their implementation. This involves the translation of mathematics into the

visual scripting logic of Grasshopper. Furthermore, it is crucial to maintain a

connection between the hyperparameters; user-controlled variables that

dictate the architecture of the network. This allows for parametrisation, further

enhancing the framework’s clarity and effectiveness as a teaching tool.

Several small tests will then be conducted to assess the robustness of these

hyperparameters, and limitations will be set at their functional extents.

Finally, larger tests are needed, following the inclusion of each concept,

to validate the accuracy of the implementation. This is achieved through

multiple comparisons of error graphs, produced during simulated training. The

comparison will be conducted between the Grasshopper framework and a

reputable C#-based framework. If the evaluation yields inconsistencies, the

research would revaluate the failures of the two prior stages and reiterate.

After the successful implementation of a concept into the Grasshopper

environment, the three-stage process restarts. This methodology repeats for

every technique researched.

5. Background Research

Architectural historian, Mario Carpo, captured the progression of the first

digital turn in architecture (Carpo, 2013). However, almost 25 years since the

start of that revolution, Carpo observes a whole new design industry, with

unprecedented computational power, favouring “a new kind of science”

(Carpo, 2017). Carpo predicts that this second digital turn in architecture is

completely different than the first. “The trend as we see it is asymptotically

approaching a state of an almost infinite amount of data, recorded, transmitted,

and retrieved at almost no cost” (Carpo, 2016). As we approach this limit,

computers can perform more and more operations, which can be compared

6 N. KHEAN

against one another to find the optimal outcome. This, almost trial-and-error

approach can eventuate in intuitions about performance, and perhaps

recognition of the different patterns that develop through infinite iteration.

“Using advanced computation, massive trial-and-error becomes a viable

computational strategy. In fact, that’s the best computational strategy, because

that’s the only thing computers really do.” (Carpo, 2016). This extraction of

intuition and pattern recognition through massive trial-and-error is a

computational metaheuristic known as a genetic algorithm, a form of ML.

“Designers have been toying with machine thinking and ML for some time”

(Carpo, 2017), yet, “toying” is all that is currently happening. However, that

is slowly changing.

In a series about ML, Grant Sanderson discusses gradient descent, and

how, specifically, neural networks learn (Sanderson, 2017). Artificial neural

networks are a biologically inspired ML paradigm, capable of solving

complex signal processing or pattern recognition problems. At the start of the

series, Sanderson introduces neural networks as the first ML algorithm that

beginners should understand. He admits that “[neural networks] are old

technology, the kind researched in the eighties and nineties. But you do need

to understand it before you can understand more detailed modern variants, and

it is clearly capable of solving some interesting problems” (Sanderson, 2017).

Consequently, the first algorithm to be implemented within the Grasshopper

framework is the neural network.

There have been several instances wherein neural networks were

implemented as predictive tools in the field of architectural construction. In

2009, Van Truong Luu and Soo Yong Kim published their paper, Neural

Network Model for Construction Cost Prediction of Apartment Projects in

Vietnam (Luu and Kim, 2009). “Although the proposed model is not validated

in a rigorous way,” Luu writes, “the artificial neural network-based model is

useful for both practitioners and researchers.” Later, in 2011, Ismaail ElSawy,

Hossam Hosny, and Mohammed Adbel Razek published their research, A

Neural Network Model for Construction Projects Site Overhead Cost

Estimating in Egypt (Elsawy et al., 2011). The paper concluded that “an

artificial neural network-based model would be a suitable tool”. These are

only two instances of research, focused specifically on the application of

neural networks, after the design process. However, neural networks have yet

to make a significant impact within the design process itself.

In more recent years, there have been attempts to combat this and

introduce ML algorithms into design platforms. Looking specifically at the

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 7

visual programming extension, Grasshopper, an addon for the 3D computer-

aided design (CAD) software, Rhino, there have been a total of four plugins

that introduce such algorithms into the environment. In 2015, Lorenzo Greco

published the first of which, called Dodo (Greco, 2015), capable of non-linear

and constrained optimisation, and artificial neural networks. In later years,

Crow (Felbrich, 2016), Owl (Zwierzycki, 2017), and Lunchbox (Miller, 2017)

were released, all capable of various forms of ML. However, as these plugins

are within an environment used by computational designers and architects,

and unless the user possesses sufficient knowledge in these specific

algorithms, it would be incredibly difficult to yield anything more than

nonsensical outputs from simply adjusting the input parameters. Furthermore,

due to the nature of all plugins, the underlying operations that drive these

algorithms are hidden behind sealed components, which produce yet another

layer of abstraction between user and comprehension. Finally, the plugins

themselves are built from C#-based libraries, namely AForge.Net (Kirillov,

2012), the discontinued NeuronDotNet (Dinesha, 2013), and Accord.Net

(Souza et al., 2014), which additional limits the introduction and facilitation

of ML processes to designers. This evaluation of the current ML frameworks

within Grasshopper was the driving factor for this research.

With the overarching objective of developing a neural network framework

from base principles, it was necessary to obtain a comprehensive

understanding of the underlying mathematics. In 2015, researcher, Michael

Nielsen, published Neural Networks and Deep Learning, a “principle-

oriented” book, which aimed to convey the core concepts of neural networks,

rather than specific coding libraries. Nielsen argues that “while [libraries

have] an immediate problem-solving payoff, if you want to understand what’s

really going on in neural networks, if you want insights that will still be

relevant in years from now, then it’s not enough just to learn some hot library”

(Nielsen, 2015). Throughout the book, Nielsen structured his explanations by

first verbalising the problem, then progressively reasoning through the

mathematics, and finally applying this knowledge upon a common ML

problem: handwritten digit recognition. He does so in an interactive manner,

through the addition of optional reader activities, and several JavaScript

elements that effectively visualise his explanations, only possible, due to the

online medium. Having obtained an understanding of the two procedures that

allow for the neural network to learn, feedforward and backpropagation,

further exploration of how the human can better facilitate that learning ensued.

8 N. KHEAN

Through the investigation of optimisation and regularisation strategies,

this research utilised the University of Stanford’s Computer Sciences

resource, Convolutional Neural Networks for Visual Recognition (Karpathy,

2014), as a yardstick for current research within the field of neural networks.

This lead to the consideration of the 2014 paper, Dropout: A Simple Way to

Prevent Neural Networks from Overfitting (Srivastava et al., 2014), and the

2005 paper, Maximum-Margin Matrix Factorisation (Srebro et al., 2005), as

a few techniques which could be implemented within the framework to better

facilitate ML.

6. Case Study

This research initially pursued an application-based approach. In collaboration

with Architectus™, an architectural firm based in Australia and New Zealand,

the objective was to develop a neural network model that could predict the

outcomes of current projects. After considerable experimentation, it was

found that the quantity of training data paled in comparison to the quantities

needed for successful neural networks, forcing a change in direction.

Instead of applying neural networks to a specific problem, this research

explored the potential for creating a general ML tool in a computational design

environment. After a brief study of the existing tools, it was discovered that

this concept had already been developed. Yet, even with these tools, there was

still a minuscule presence of ML within design. This lead to the final objective

of this research: to create a neural network framework in a design

environment, that poses as a teaching resource, to inform computational

designers and architects about ML algorithms.

6.1. BASIC OPERATIONS

Neural networks function through the combination of two processes:

feedforward and backpropagation. This research explores these procedures, as

well as their parametric implementation as a Grasshopper definition.

6.1.1. Feedforward

In neural networks, feedforward describes the process of passing input values,

through a hierarchical layering of neurons, to produce an output in the final

layer. There are two operations within a neuron: the calculation of a value

known as the net, and the activation of that net through a nonlinearity known

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 9

as an activation function. Ignoring the latter for now, the net calculation can

be defined as a weighted sum of inputs, in addition to a bias.

 𝑛𝑒𝑡 = ∑(𝑖𝑛𝑝𝑢𝑡𝑠 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) + 𝑏𝑖𝑎𝑠 (1A)

 𝑧𝑖
𝑙 = ∑ 𝑎𝑗

𝑙−1 ∙ 𝑤𝑖𝑗
𝑙

𝑗 + 𝑏𝑖
𝑙 (1B)

These weights and biases are values that change over the learning process,

and as such are known as learned parameters. Below is the net calculation, as

defined in the Grasshopper environment.

Figure 2. Net calculation of a neuron assuming a singular input.

However, the above definition (figure 2) only contains the calculations

within a single neuron. Neural networks are typically made of several layers,

containing tens, and at times, hundreds of neurons in each layer. It would be

ridiculous to ask the user to repeat this definition for every neuron within the

network. So, for the development of a framework that is to be robust enough

for any network configuration, this definition had to be reconsidered.

Figure 3. Layer-based net calculation.

Instead of calculating the procedures of a single neuron, the definition in

figure 3 utilises data trees to represent every neuron within the layer. However,

for every neuron, there is a need replicate each input. To facilitate this

10 N. KHEAN

repetition, the inclusion of a hyperparameter, a user-controlled variable,

dictates the number of times the previous activations are replicated. Testing

this definition with simulated data trees proved its ability to successfully

handle the net calculations within an entire layer; from a single neuron, to an

infinite amount.

The final operation that occurs within a neuron is the activation of the net.

This involves passing the net through a nonlinearity known as an activation

function. Their purpose is to allow the network to approximate more complex

outcomes. There are several types of activation functions, however, this

research uses the Sigmoid and ReLU.

Figure 4. From top to bottom, the Sigmoid and ReLU activation functions.

Adding the activation function component to the net will finalise the

operations in feedforward (figure 5).

Figure 5. Activation function is applied after the net calculations.

6.1.2. Backpropagation

Executing the process of feedforward alone does not constitute any ML.

Actual learning in neural networks happen through an assessment of

performance, leading to an adjustment of the learned parameters, in an attempt

to improve the output of feedforward. This is known as backpropagation.

Backpropagation is the process by which the individual error contribution

of each neuron is calculated and passed backwards through the network. The

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 11

weights and biases connected to those neurons are adjusted proportional to

their error contribution. This adjustment of learned parameters is how the

machine learns.

The error contribution for the output neurons is dependent upon the

activation function used in that layer, however, below is the generalised form.

 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = (𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡) ×
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑛𝑒𝑡 (2A)

 𝛿𝑖
𝐿 = (𝑎𝑖

𝐿 − 𝑦𝑖) ⊙ 𝜎′(𝑧𝑖
𝐿) (2B)

Assuming that the output layer is using the Sigmoid activation function,

below is the Grasshopper definition for calculating the individual error

contribution of the output neurons.

Figure 6. The output error contribution with a Sigmoid layer.

The adjustment of the learned parameters requires the introduction of

another hyperparameter, the learning rate. The learning rate determines the

scale of the adjustment. Below are the mathematics behind updating the

weights and biases of a neural network, as well as the corresponding

Grasshopper definition.

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡  =  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ×
𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 (3A)

 𝑤 
+

𝑖𝑗
𝐿 = 𝑤𝑖𝑗

𝐿 − 𝜂 ∙ 𝛿𝑖
𝐿 ∙ 𝑎𝑗

𝐿−1 (3B)

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑏𝑖𝑎𝑠 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑏𝑖𝑎𝑠 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ×
𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (4A)

 𝑏 
+

𝑖
𝐿 = 𝑏𝑖

𝐿 − 𝜂 ∙ 𝛿𝑖
𝐿 (4B)

12 N. KHEAN

Figure 7. Updating the weights and biases.

6.1.3. Network Error Calculation

The error, also known as the cost or the loss, is a value attributed to the

performance of the entire network. It is determined by the network prediction

against the target output. This target output is attached to the training data,

which is why neural networks are a supervised ML algorithm. The lower the

error, the more accurately the network is modelling the training data.

It is important to note that the total error differs from the individual error

contribution of neurons. The individual error contribution is a judgement on

each neuron’s performance, whereas the total network error is a less nuanced

indication of how the entire network is performing.

There are several different error functions, however this study exclusively

uses the mean squared error function, also known as the quadratic cost

function.

 𝑒𝑟𝑟𝑜𝑟 =
1

2
∑(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 (5A)

 𝐸 =
1

2𝑛
∑(𝑦 − 𝑎𝐿)2 (5B)

Below is the implementation of the mean squared error function within

Grasshopper.

Figure 8. Mean squared error function.

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 13

6.1.4. Deep Learning

“The earliest artificial neural networks lacked hidden layers”, writes Frank

Wilczek. “Their output was, therefore, a relatively simple function of their

input” (Wilczek, 2011). Hidden layers introduce the concept of deep learning

to neural networks, by simply stacking the process of feedforward.

Figure 9. Stacking two feedforward operations to facilitate deep learning.

However, the process of backpropagation becomes slightly more

complex. This is because there are no explicit target outputs for the hidden

layers. As such, the hidden layers rely on the error of the layer after it, in

conjunction to their dependence on the activation function.

 ℎ𝑖𝑑𝑑𝑒𝑛 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = ∑(𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑒𝑡 𝑙𝑎𝑦𝑒𝑟 ×
𝑤𝑒𝑖𝑔ℎ𝑡𝑠) × 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑛𝑒𝑡 (6A)

 𝛿𝑗
𝑙 = ∑ ((𝑤𝑖𝑗

𝑙+1)
𝑇

∙ 𝛿𝑖
𝑙+1)𝑖 ⊙ 𝜎′(𝑧𝑗

𝑙) (6B)

Below is the Grasshopper definition for the calculation of a hidden layer’s

error contribution, assuming that the activation function used in the layer is

the ReLU activation.

Figure 10. The hidden error contribution with a ReLU layer.

14 N. KHEAN

6.1.5. Batch and Mini-Batch Gradient Descent

Thus far, every Grasshopper definition was created under the assumption that

the input neurons would contain only one value. This is known as stochastic

gradient descent: teaching the neural network by showing it one training data

point at a time, and letting it adjust its learned parameters after each data point.

Stochastic gradient descent is a great starting point from an educational

perspective, as it is the simplest to understand and implement. However, in

practice, there are several downsides. Calculating the error of a single data

point, which could be an outlier or noise, will cause unwanted adjustments.

A method used to combat this is known as mini-batch gradient descent.

Instead of inputting a single data point at a time, mini-batch learning involves

splitting up the pool of training data into a determined number of mini-

batches, and training the network upon every data point within the batch. If

the number of mini-batches is set to one, the network will calculate the error

of all training examples at once, which is known as full-batch learning.

Full-batch gradient descent has the reputation of being an accurate, but

slow learning method. With mini-batch learning, however, a degree of

accuracy is maintained through the averaging of multiple data points,

alongside the benefits associated with stochastic learning, such as the speed

and some friendly noise.

By providing the user control over the number of batches, this research

developed a Grasshopper definition that is robust enough to handle both

stochastic, and full-batch gradient descent, as well as any number of mini-

batches in between.

Figure 11. Division of input and target data points according to mini batch hyperparameter.

However, all the previous definitions only operate with stochastic gradient

descent. As such, a revision of each component in the framework was needed.

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 15

Figure 12. From top to bottom, revised definitions for the net calculations, the hidden error

contribution, and the updating of weights and biases.

6.2. OPTIMISATION AND REGULARISATION TECHNIQUES

Deep learning is a great technique to better the complexity and capabilities of

neural networks. However, it also increases the potential for a model to

overfit. Overfitting is a statistical concept whereby a model, such as a neural

network, mimics the training data too closely, and fails to derive the trend.

Overfitting is detrimental as the neural network’s accuracy will slowly

deteriorate the moment overfitting starts.

Below are the four optimisation and regularisation methods implemented

within the developed framework, to better the process by which the machine

learns.

6.2.1. Exponential Learning Rate Decay

Using too small a learning rate will cause the network to take a ridiculous

amount of time to train, however, using a learning rate too large will cause the

gradient descent algorithm to struggle to settle in a local minimum.

A method to circumnavigate the effort needed to find the perfect learning

rate is to decay the learning rate over time. This allows for rapid adjustments

at the start of learning, which then changes to a more refined search later on.

16 N. KHEAN

Figure 13. Exponentially decaying the learning rate.

6.2.2. Momentum Learning

Gradient descent alone can become a slow process. Especially when nearing

a minimum, the gradients will inevitably decrease in magnitude, subsequently

lowering the parameter adjustment. A technique used to speed up similar

consecutive adjustments is known as momentum learning. Momentum

learning stores the previous adjustments to the weights and biases, to slightly

influence the current adjustment. This speeds up consecutive, similar

adjustments, but also causes the adjustments to overshoot the optima.

Figure 14. Momentum learning and max norm constraint.

6.2.3. Max Norm Constraint

On occasion, if the learning rate is too high, an update to the learned parameter

has the potential to leap to an incredibly large magnitude. A form of

regularisation is to enforce an absolute upper bound on these parameters. This

technique is called the max norm constraint (Srebro et al., 2005).

6.2.4. Dropout

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 17

The larger a neural network, the more likely the network will overfit. A

method to overcome this is through bootstrap aggregating (Breiman, 1994).

This involves training several networks, and averaging the learned parameters.

However, as this is mostly needed for larger networks, this is a

computationally taxing procedure. A technique for addressing this problem is

called dropout (Srivastava et al., 2014).

Dropout involves the random selection of a percentage of neurons within

a layer, and setting their activation to zero for this training cycle. The random

selection changes every iteration. “This prevents units from co-adapting too

much” (Srivastava et al., 2014).

Figure 15. Dropout applied after every activation.

6.3. DEVELOPED FRAMEWORK

Combining the definitions of feedforward and backpropagation, as well as the

aforementioned optimisation and regularisation techniques, all connected with

a mechanism to overcome Grasshopper’s recursive loop avoidance check,

produces the deep neural network framework.

Figure 16. Final neural network framework (see Appendix B for a higher resolution).

7. Significance of Research

ML algorithms have proven to be incredibly effective at problem-solving in

numerous fields of research and industry. They have been at the forefront of

innovations such as image recognition, feedback control of actuated

18 N. KHEAN

prosthetics, and cancerous cell classification. The successes of these

advancements have inspired the use of ML algorithms on the peripheries of

architecture and design.

The utilisation of neural networks as a model to predict the construction

cost of apartment buildings (Luu and Kim, 2009), is an instance wherein ML

algorithms were successfully implemented in the field of architectural

construction. Looking at the design process itself, there have been projects

that produced ML plugins inside parametric modelling environments, in the

hopes of a greater ML presence within design.

This research has added an alternative pathway for the implementation of

ML algorithms in a design environment. Instead of focusing on a specific

application-based problem, the research has developed a framework which is

flexible to a multitude of applications. This has the potential to increase the

occurrence of smarter, more efficient design, prompted by artificial

intelligences in the future of architecture.

In parallel, the research outcomes were developed as a teaching tool aimed

at computational designers and architects. The entirely transparent nature of

the framework provides for an enquiry-based learning approach (Hutchings,

2006). Newcomers to ML, who have prior knowledge of the Grasshopper

environment, can utilise this tool to comprehend the inner workings of neural

networks in a hands-on fashion.

Lastly, there have been a substantial quantity of research papers

developing methods to improve how neural networks learn. Over time, these

methods can be easily added to the framework, due to its unambiguous and

robust development. This has the potential to not only enhance the process by

which the machine learns, but also add to the volume of neural network

content available for designers to learn.

8. Evaluation of Research Project

The aim of this research was to develop an ML framework, within a

parametric modelling environment, in a completely transparent and

unambiguous fashion. The framework is a method to facilitate a greater ML

presence within design, by informing computational designers and architects

about the operations within ML algorithms.

The goal of developing an ML framework, that includes a multitude of

algorithms created from their base mathematical principles, was slightly

beyond the scope of this research. The developed outcome was comprised of

only one ML algorithm: the neural network. However, “you need to

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 19

understand [neural networks] before you can understand more detailed

modern variants” (Sanderson, 2017). Given further time, other ML

algorithms, such as convolutional neural networks, or recurrent neural

networks, could be implemented, furthering the framework’s potential for

application, as well as its breadth for education.

Retrospectively evaluating the outcome reveals its robustness. A user can

effectively apply the framework, and expect a reliable result. However, in

comparison to existing tools, such as Owl (Zwierzycki, 2017) or Dodo (Greco,

2015), the framework will inherently underperform in terms of speed. Yet, the

framework offers something that no plugin can: introspection.

The framework was created with clarity and transparency in mind.

Everything within a neural network was broken into their smallest operation,

and explicitly constructed within the Grasshopper environment. Further, every

concept was divided into separate, colour-coded groups and labelled

accordingly. It does well in maintaining a logical progression, by

comprehensively labelling and organising the flow of data. By creating an

interactive, spatial learning tool, the framework facilitates a greater potential

for comprehension by designers and architects, ultimately fulfilling the

research objectives.

9. Conclusion

Mario Carpo suggests a design industry “where prediction can be based on

sheer information retrieval, and form finding by simulation and optimisation

can replace deduction from mathematical formulas” (Carpo, 2017). Through

the development of an original ML framework, made specifically as a teaching

tool for designers, a step has been taken towards Carpo’s prediction.

Progression towards more ML-driven design starts at an operational

understanding of artificial neural networks. Through experimentation within

a familiar environment, and investigation into functions that have been

fractured into their base mathematical and programmatic operations,

computational designers can gain this understanding. Throughout this

research project, a teaching tool to facilitate such understanding was

developed.

If this research were to be taken further, more complex ML algorithms

could potentially be implemented within the Grasshopper environment. This

not only provides a more comprehensive ML framework, but also increases

the scope of teaching that this tool can provide.

20 N. KHEAN

Finally, this framework is not limited to architects and designers. Anyone

interested in ML can utilise this tool. Perhaps the upcoming influx of

intelligence algorithms will shape more than we anticipate.

Acknowledgements

This research was supported by the faculty of the Built Environment at UNSW, BIM Consulting

and Architectus.

References

Biewald, L.: 2016. “How Real Businesses are Using ML”. Available from: TechCrunch

<https://techcrunch.com/2016/03/19/how-real-businesses-are-using-machine-learning/>

(accessed 02 August 2017).

Breiman, L.: 1994. “Bagging Predictors”. Available from: Department of Statistics University

of California <https://www.stat.berkeley.edu/~breiman/bagging.pdf> (accessed 13 August

2017).

Brownlee, J.: 2017. “A Gentle Introduction to Mini-Batch Gradient Descent and How to

Configure Batch Size”. Available from: ML Mastery

<https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-

configure-batch-size/> (accessed 23 July 2017).

Carpo, M.: 2013. “The Digital Turn in Architecture 1992 – 2012”. Available from: Google

Books

<https://books.google.com.au/books/about/The_Digital_Turn_in_Architecture_1992_20.h

tml?id=sc9B3mxLCUcC&redir_esc=y> (accessed 15 August 2017).

Carpo, M.: 2016. “ACADIA 2016 Keynote – Mario Carpo”. Available from: Vimeo

<https://vimeo.com/210622365> (accessed 15 August 2017).

Carpo, M.: 2017. “The Second Digital Turn: Design Beyond Intelligence”. Available from: The

MIT Press <https://mitpress.mit.edu/books/second-digital-turn> (accessed 15 August

2017).

Dinesha, V.: 2013. “NeuronDotNet”. Available from: GitHub

<https://github.com/trarck/NeuronDotNet> (accessed 26 August 2017).

ElSawy, I., Hosny, H. and Razek, M. A.: 2011. “A Neural Network Model for Construction

Projects Site Overhead Cost Estimating in Egypt”. Available from: Cornell University

Library <https://arxiv.org/abs/1106.1570> (accessed 25 July 2017).

Felbrich, B.: 2016. “Crow”. Available from: Food 4 Rhino

<http://www.food4rhino.com/app/crow-artificial-neural-networks> (accessed 26 August

2017).

Greco, L.: 2015. “Dodo”. Available from: Food 4 Rhino

<http://www.food4rhino.com/app/dodo> (accessed 26 August 2017).

Hutchings, B.: 2006. “Principles of Enquiry-Based Learning”. Available from: Centre for

Excellence in Enquiry-Based Learning

<http://www.ceebl.manchester.ac.uk/resources/papers/ceeblgr002.pdf> (accessed 02

November 2017).

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 21

Karpathy, A.: 2014. “Convolutional Neural Networks for Visual Recognition”. Available from:

Github <http://cs231n.github.io/> (accessed 10 August 2017).

Kelly, K.: 2014. “The Three Breakthroughs that have Finally Unleased AI on the World”.

Available from: Wired <https://www.wired.com/2014/10/future-of-artificial-intelligence/>

(accessed 02 August 2017).

Kirillov, A.: 2012. “AForge.NET”. Available from: AForge.NET

<http://www.aforgenet.com/> (accessed 26 August 2017).

Luu, V. T. and Kim, S. Y.: 2009. “Neural network Model for Construction Cost Prediction of

Apartment Projects in Vietnam”. Available from: Research Gate

<https://www.researchgate.net/publication/264113646_Neural_Network_Model_for_Con

struction_Cost_Prediction_of_Apartment_Projects_in_Vietnam> (accessed 25 July 2017).

MacIsaac, D.: 1996. “An Introduction to Action Research”. Available at: Buffalo State

University <http://physicsed.buffalostate.edu/danowner/actionrsch.html> (accessed 02

November 2017).

Miller, N.: 2017. “Lunchbox”. Available from: Food 4 Rhino

<http://www.food4rhino.com/app/lunchbox> (accessed 26 August 2017).

Narula, G.: 2017. “Everyday Examples of Artificial Intelligence and ML”. Available from:

Tech Emergence <https://www.techemergence.com/everyday-examples-of-ai/> (accessed

02 August 2017).

Nielsen, M. A.: 2015. “What this Book is About”. Available at: Neural Networks and Deep

Learning <http://neuralnetworksanddeeplearning.com/about.html> (accessed 12 July

2017).

Phelan, N.: 2016. “Designing with ML”. Available from: We Work

<https://www.wework.com/blog/posts/designing-with-machine-learning> (accessed 02

August 2017).

Sanderson, G.: 2017. “Gradient Descent, How Neural Networks Learn”. Available at: Youtube

<https://www.youtube.com/watch?v=IHZwWFHWa-w> (accessed 16 October 2017).

Sardina, S.: 2017. “Artificial Intelligence”. Available from: RMIT University

<http://www1.rmit.edu.au/courses/004123> (accessed 02 August 2017).

Souza, C., Kirillov, A. and Catalano, D.: 2014. “Accord.NET”. Available from: Accord.NET

<http://accord-framework.net/> (accessed 26 August 2017).

Srebro, N., Rennie, J. D. M. and Jaakkola, T. S.: 2005. “Maximum-Margin Matrix

Factorization”. Available from: University of Chicago

<http://ttic.uchicago.edu/~nati/Publications/MMMFnips04.pdf> (accessed 17 October

2017).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: 2014. “Dropout:

A Simple Way to Prevent Neural Networks from Overfitting”. Available from: University

of Toronto <https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf> (accessed 13

August 2017).

Wilczek, F.: 2011. “Hidden Layers”. Available from: Edge https://www.edge.org/response-

detail/10351 (accessed 3 August 2017).

Zwierzycki, M.: 2017. “Owl”. Available from: Food 4 Rhino

<http://www.food4rhino.com/app/owl> (accessed 26 August 2017).

https://www.edge.org/response-detail/10351
https://www.edge.org/response-detail/10351

22 N. KHEAN

Appendix A: Equations

A.1. NET

 𝑧𝑖
𝑙 = ∑ 𝑎𝑗

𝑙−1 ∙ 𝑤𝑖𝑗
𝑙

𝑗 + 𝑏𝑖
𝑙

A.2. ACTIVATION

 𝑎𝑖
𝑙 = 𝜎(𝑧𝑖

𝑙)

A.3. NETWORK ERROR

 𝐶 =
1

2𝑛
∑ (𝑦(𝑥) − 𝑎𝐿(𝑥))

2
𝑥

A.4. ERROR CONTRIBUTION OF OUTPUT NEURONS

 𝛿𝑖
𝐿 = (𝑎𝑖

𝐿 − 𝑦𝑖) ⊙ 𝜎′(𝑧𝑖
𝐿)

A.5. ERROR CONTRIBUTION OF HIDDEN NEURONS

 𝛿𝑗
𝑙 = ∑ ((𝑤𝑖𝑗

𝑙+1)
𝑇

∙ 𝛿𝑖
𝑙+1)𝑖 ⊙ 𝜎′(𝑧𝑗

𝑙)

A.6. PARTIAL DERIVATIVE OF ERROR WITH RESPECT TO WEIGHT

𝜕𝐶

𝜕𝑤𝑖𝑗
𝑙 = 𝑎𝑗

𝑙−1 ∙ 𝛿𝑖
𝑙

A.7. PARTIAL DERIVATIVE OF ERROR WITH RESPECT TO BIAS

𝜕𝐶

𝜕𝑏𝑖
𝑙 = 𝛿𝑖

𝑙

A.8. EXPONENTIAL LEARNING RATE DECAY

 𝜂 
+ = 𝜆 ∙ 𝜂

 THE INTROSPECTION OF DEEP NEURAL NETWORKS 23

A.9. MOMENTUM

 𝑣 
+

𝑖𝑗
𝑙 = 𝜇 ∙ 𝑣𝑖𝑗

𝑙 − 𝜂 ∙
𝜕𝐶

𝜕𝑤𝑖𝑗
𝑙

 𝑣 
+

𝑖
𝑙 = 𝜇 ∙ 𝑣𝑖

𝑙 − 𝜂 ∙
𝜕𝐶

𝜕𝑏𝑖
𝑙

A.10. UPDATING WEIGHT

 𝑤 
+

𝑖𝑗
𝑙 = 𝑤𝑖𝑗

𝑙 + 𝑣𝑖𝑗
𝑙

A.11. UPDATING BIAS

 𝑏 
+

𝑖
𝑙 = 𝑏𝑖

𝑙 + 𝑣𝑖
𝑙

A.12. MAX NORM CONSTRAINT

 |𝑤| ≤ 𝑐

A.13. DROPOUT

 𝑟𝑗
𝑙 ≈ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

 â𝑗
𝑙(𝑥) = 𝑟𝑗

𝑙 ∙ 𝜎 (𝑎𝑗
𝑙(𝑥))

 𝑧𝑖
𝑙+1(𝑥) = ∑ â𝑗

𝑙(𝑥) ∙ 𝑤𝑖𝑗
𝑙+1 + 𝑏𝑖

𝑙+1
𝑗

