
Adjudicating by Algorithm
Scripting building regulations to generate

permissible forms

Thesis submi�ed to the Faculty of the Built Environment in fulfilment of the requirements for the

degree of Computa�onal Design (Honours).

Nazmul Khan z5018132

Computational Design (Honours)

University of New South Wales

2017

Supervisors: Dr. M. Hank Haeusler, Ben Doherty and Rob Asher

Examiners: Nicole Gardner and Alessandra Fabbri

1

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, or substantial

proportions of material which have been accepted for the award of any other degree or

diploma at UNSW or any other educational institution, except where due acknowledgement

is made in the thesis. Any contribution made to the research by others, with whom I have

worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that

the intellectual content of this thesis is the product of my own work, except to the extent that

assistance from others in the project's design and conception or in style, presentation and

linguistic expression is acknowledged.’

Signed …………………………………………….........

Date …………………………………………….............

2

List of Publications

Throughout the year of research, the following papers were wri�en and presented at the

following conferences:

The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2017), Hong

Kong

Urban Pinboard - Establishing a Bi-directional Workflow Between Web-based Platforms and

Computational Tools

Architecture is heading towards a future where data is collected, collated and presented in a dynamic

pla�orm. Urban Pinboard is a web-based GIS pla�orm that promises to establish a bi-direc�onal

workflow between web data repositories and computa�onal tools. This paper presents a workflow

between websites and computa�onal tools to allow users with minimal experience in computa�onal

processes to be engaged in the u�lisa�on of these large datasets.

Urban Planning and Property Development Conference (UPPD 2017), Singapore

Humpback - Introducing and evaluating a GeoJSON constructor tool for Grasshopper

This paper presents Humpback, a plugin for the computa�onal tool Grasshopper. In our background

research we iden�fied that due to limited workflow connec�on between Geographical Informa�on

Systems (GIS) and computa�onal design tools, a gap of informed urban design outcomes exists.

Humpback extends Grasshoppers capability to read and write GeoJSON; a geographic data format.

This enables a new approach to urban planning by allowing computa�onally generated forms to be

visualised in GIS so�ware. These tools produce itera�ve, smarter urban solu�ons which can be

shared on a wider pla�orm. This paper introduces and details Humpback’s crea�on, evaluates the

tool, as well as its applica�on to Mapbox, a GIS pla�orm.

Urban Design Conference (UD 2017), Surfers Paradise, QLD

Encoding Building Regulations - Translating Regulations into Code to Inform Better Urban Outcomes

This paper outlines computa�onal law as a field, and describes how it can be applied to urban design

through several examples. We present Dugong; a maximum envelope genera�on tool. Beluga as an

example of conver�ng regula�ons to code and Minke as a versioning tool. Though these case studies

we speculate on how expressing more urban planning laws through computer code might be

beneficial to stakeholders in decision making processes.

3

ABSTRACT

This paper outlines Law as Code as a concept, and demonstrates how it can be applied to urban

planning through several prototype scripts. By doing so, processes such as tes�ng new urban

schemes, and preliminary design analysis can become automated. Beluga is presented as an example

of conver�ng regula�ons to code to generate permissible envelopes; Humpback is presented as tool

to convert between GIS and computa�onal tools; and Minke presented as a versioning tool. Through

these case studies we speculate on how expressing more urban planning laws through computer

code might be beneficial to stakeholders in decision making processes.

Keywords: Urban Planning, Computa�onal Design, Geographic Informa�on Systems, Design Tool,

Web App, Data Interoperability, Building Regula�ons, Policy, Building Law, Grasshopper

4

TABLE OF CONTENTS

ABSTRACT 4

TABLE OF CONTENTS 5

DEFINITIONS 8

List of Figures 10

List of Tables 11

INTRODUCTION 12

Computa�onal Law 12

Law as Code 13

Ambiguity in Law 14

Transla�ng Language to Code 15

Chapter Summary 18

RESEARCH AREA 18

Methodology 18

Cox Architecture 19

Interviews with Experts 19

Literature Review 20

Research Ques�on, Aims and Objec�ve 20

Prototype tools (Marine Park) 21

UNDERSTANDING THE PROBLEM 22

Planning Controls 22

Redundancy in Regula�ons 23

Towards 3D Planning Controls 24

Sydney Cove Redevelopment Authority Scheme 25

Precedent Studies 26

Flux Metro 26

Envelope Beta 27

COMPUTATIONAL METHODOLOGY 29

What is Computa�onal Design? 29

Computa�onal Design tools 29

Addressing the Objec�ve 31

5

What is a permissible building envelope? 31

The Script — Beluga 31

Computa�onal Workflow 32

Modularisa�on as a Scrip�ng Philosophy 34

HUMPBACK 36

Data Interchange Formats for GIS 36

Mo�va�ons for Humpback 37

Open Formats as a Method 38

Evalua�on of Exis�ng Tools 39

Meerkat 39

_EXPORT 39

Mobius 39

Development of Humpback 40

Humpback Components 41

Example workflow 43

Chapter Summary 46

BELUGA 46

Impor�ng Planning Controls Using Humpback 47

Assigning Controls 48

Evalua�ng Lots 48

Setbacks and Height of Building 49

Solar Access Planes 51

Floor Space Ra�o 51

Chapter Summary 53

MINKE 54

Versioning of the Law 54

Version Control Systems 54

Git 55

GitHub 55

Development of Minke 56

Why hasn’t distributed version control already been adopted in Law? 57

SIGNIFICANCE OF SCRIPTING REGULATIONS 59

6

Mass Itera�ons 59

Sta�s�cal Output 61

Virtual Reality and Facade generator 62

Dugong: Decision Support System 63

CONCLUSION 65

Evalua�on 65

Future work 65

Exposure 66

Fin 67

REFERENCES 68

Appendix 72

Peter Holt 72

David Haron 83

7

DEFINITIONS

This research was part of a two-part theses, completed in collabora�on with Cox Architecture and

fellow research partner Madeleine Johanson

Although these terms enjoy a rich and interes�ng life outside of this study, for the purpose of this

paper, the following terms will be defined as follows:

Term Definition

Algorithm A process or set of rules to be followed, by a computer, usually to
calculate or perform problem-solving opera�ons.

Computa�onal Design Refers to the applica�on of computa�onal strategies to the design
process.

Modularisa�on The process of dividing up a script into its separate func�ons, so that
the modules can be reused.

Parametric Design The applica�on of algorithmic methods to define design rela�onships
and produce a response to apply to buildings and urban organisa�on.

Urban Planning The process of design and organisa�on of urban space. Deals with the
development and use of land, permissions, protec�on of the
environment, public welfare and infrastructure.

Geographical Informa�on
Systems (GIS)

A computer system where spa�al and geographic data can be stored,
managed, analysed and maintained.

Visual Scrip�ng Any programming language that lets users create programs by
manipula�ng elements graphically rather than textually.

Grasshopper A visual scrip�ng environment used to create programs that generate
and manipulate geometry and data. It is a plugin for Rhino.

Scrip�ng Any programming language that automates the execu�on of tasks,
carried out by the computer.

JavaScript A programming language, commonly used to create interac�vity on
websites.

8

Applica�on Programming
Interface (API)

A set of func�ons that allow a website to interact with an applica�on
to provide an addi�onal service or func�onality. For example, in this
project we use Mapbox’s API to provide the map for the applica�on.

Mapbox Provides custom online maps for websites and applica�on, using open
source informa�on from OpenStreetMaps and NASA. Some
applica�ons that use Mapbox include Uber and Airbnb.

Open Format A file format for storing digital data, defined by a published
specifica�on, which can be used and implemented by anyone. E.g.
Portable Document Format (PDF), widely used to transfer and present
documents.

Open Source So�ware that distributes it source code, that anyone can inspect,
modify and enhance. The opposite to this is ‘closed source’ so�ware,
where only the organisa�on who created the source code can make
modifica�ons (Opensource, 2017).

GeoJSON An open file format for encoding geographic data.

Building Envelope The space a building occupies on a site.

Permissible Building
Envelope

A 3D form defining the maximum space a building occupies on a site.

Local Environment Plan (LEP) Legisla�on for planning decisions for local government areas.

Height of Building (HOB) The maximum height of the building allowed by the LEP.

Floor Space Ra�o (FSR) The Floor Space Ra�o is the ra�o of the total area of a building's floors
to the area of the site, as dictated by the LEP.

Git Git is a distributed version control system that can detect and keep

track of changes in documents.

Github GitHub is an web-based pla�orm that uses Git to allow developers to

store, manage and host projects online.

9

Gist Gist is a service provided by GitHub that allows you share code with

other people. You can share small snippets of code, par�cular files, or

an en�re project.

Gross building Area (GBA) The total area in square meters of all the floors in a building.

Gross Floor Area (GFA) The total area of usable floor space inside a building

List of Figures

Figure 1: Prima Figvra (Dalakov, 2017)

Figure 2: Laws that can’t and can be automated

Figure 3: Overall methodology diagram

Figure 4: Sydney LEP are divided into 24 sheets per planning control.

Figure 5: HOB and sun plane defining the buildings height

Figure 6: Sydney Cove Redevelopment Authority Scheme

Figure 7: Flux Metro Aus�n Preview renders the maximum buildable envelope for a parcel that is

impacted by different building regula�ons (Didech, 2015)

Figure 8: The interface of Envelope Beta, showing the maximum building envelope for the selected

site (ibid.)

Figure 9: A simple func�on in Grasshopper with basic transforma�on of data

Figure 10: The figure shows parametric rela�onship between a point and mul�ple boxes, and the

script used to generate it.

Figure 11: diagram of beluga script on a fundamental level

Figure 12: Rela�onship between prototype tools in this research

Figure 13: Alternate methodology diagram

Figure 14: Rhino model of building to be converted into GeoJSON

10

Figure 14: Example Grasshopper script for the workflow below

Figure 16: Rendered building in Mapbox

Figure 17: Grasshopper script conver�ng HOB GeoJSON file into geometry. In this case the HOB data

is stored in a key called max_b_h

Figure 18: HOB data associated with cadastral outlines

Figure 19: Evalua�on of street facing edges

Figure 20: Setback rules defined in Beluga

Figure 21: Permissible building envelopes based on HOB and setback data

Figure 22: Solar Access controlling the maximum height of building

Figure 23: (Top) FSR of 8 (Bo�om) FSR of 12. If the HOB control has already defined the height, then

the script can’t exceed that.

Figure 24: Pos�ng a Gist, the process of patching Gists is similar.

Figure 25: Ge�ng Gists from a URL

Figure 26: People who have a Github Account vs Lawyers

Figure 27: Sta�s�cal Output

Figure 28: (Top) Facade generator (Bo�om) Exis�ng context

Figure 29: Dugong web app (Johanson, 2017)

List of Tables

Table 1: Humpback Components

Table 2: Mass Itera�ons

11

INTRODUCTION

Laws are a codifica�on of a society’s norms. They capture the current state of those norms in a way

that can be communicated and interpreted with some degree of consistency. Programming

languages do a very similar job; they capture a set of opera�ons and decisions in a way that can be

consistently executed. This paper explores the benefits of capturing law in programming languages,

and demonstrates how it can be applied to urban planning laws through several prototype scripts.

These scripts were developed with an aim to automate tasks within urban planning, such as tes�ng

new policies and urban schemes.

The following chapter discusses the current role technology has played in law, and defines features of

laws that allows and prevents them from being captured as code.

Computational Law

Computa�onal Law is a field that has been developed through the integra�on of computer systems

with law. It is a “branch of legal informa�cs concerned with the mechaniza�on of legal analysis

(whether done by humans or machines)” (Genesereth, 2015). The field uses condi�ons and

rela�onships between the statements of the law and automates the language into a computa�onal

script. Currently, this is through computer systems which automate legal decisions such as

“compliance checking, legal planning, and regulatory analysis” (ibid.). A dis�nguishing feature of

these systems is that they have the capability to interpret the content of laws, rather than just search

for them. By automa�ng these laws into a system, decision making is made easier. As the field

develops, “Governments have increasingly sought to u�lise automated processes which employ

coded logic and data-matching to make, or assist in making, decisions.” (Perry, 2014). For Example:

"Intuit's Turbotax is a simple example of a rudimentary Computational Law system. Millions use it

each year to prepare their tax forms. Based on values supplied by its user, it automatically computes

the user's tax obligations and fills in the appropriate tax forms. If asked, it can supply explanations

for its results in the form of references to the relevant portions of the tax co"

(Genesereth, Computational Law , 2015)

12

Tax systems are an ideal candidate for Computa�onal Law systems because the rules that they

compose are logical and systema�c. Computa�onal Law demonstrates a fundamental advantage of

integra�ng technology with law; to automate �me consuming process.

Law as Code

Law as code is the concept of transla�ng laws into programmable logic which can then be processed

by a computer. It differs from Computa�onal Law as it is an alterna�ve to the current documenta�on

of laws as legal prose. The code itself becomes the law. This is par�cularly ideal with laws that are

based on a series of statements, as they are more straigh�orward to translate into condi�ons within

a computer system. Documen�ng laws as code allows for new opportuni�es, such as be�er

maintenance, tes�ng and simula�on methods of laws (Genesereth, 2015).

The transla�on of arguments into code was explored as early as the 14 th Century by Majorcan

philosopher Ramon Llull, “who tried to make logical deduc�ons in a mechanical rather than a mental

way” (Dalakov, 2017). He invented a paper ‘machine’ as a means to convert people to Chris�anity

through logical statements. It “proposed eighteen fundamental general principles [...] accompanied

by a set of defini�ons, rules, and figures in order to guide the process of argumenta�on, which is

organised around different permuta�ons of the principles” (Gray, 2016)

.

Figure 1: Prima Figvra (Dalakov, 2017)

13

This is an early a�empt to capture norms through explicit rules—a defining characteris�c of

computa�on. Similar to laws, it is a tool of reasoning.

Ambiguity in Law

The wording of laws are o�en le� ambiguous to allow for freedom of interpreta�on in future

situa�ons. Real world situa�ons are unpredictable and can be judged differently based on context.

Therefore, “many legal decisions are made through case-based reasoning, bypassing explicit

reasoning about laws and statutes” (Love, 2005). This lack of absolute specificity makes it challenging

to translate laws into computer language.

Some laws are more clear-cut. If a driver exceeds the speed limit, they have commi�ed an offence,

and many speed cameras will autonomously issue a fine (Hartzog et al, 2015). Extenua�ng

circumstances can be considered in an appeal, but this s�ll reduces the total amount of work done by

humans. Enumera�ng the extenua�ng circumstances is a poten�ally infinite task. What defines a

medical emergency? How injured does a person need to be to allow speeding? This is dealt with

human interven�on in an appeal by a judge or magistrate. Similarly, automated systems could handle

the more logical, rule based systems and then pass the more complex decisions to an expert. These

human-machine “centaur” teams have had some significant success in chess (Cassidy, 2015), and are

endorsed as a likely future scenario for work.

The crea�on of new areas of law is likely to remain the domain of skilled humans for the foreseeable

future. Incomplete contract theory (Bolton and Dewatripont, 2005) describes the problems of

planning for the future; situa�ons arise that none of the par�es could have imagined leading to

discussions to resolve the extra-contractual event. “Whoever designed the computer system cannot

gather good data on all of these factors so that the program can take them into account. The only

way to do that is to have a much more comprehensive model of the world than any computer system

has” (McAfee and Brynjolfsson, 2017). The complete contract theory conceptualises that every

possible state has been agreed upon, elimina�ng the need for legal discussion or courts (Bolton and

Dewatripont, 2005). This theory is mirrored in the debate of autonomous cars, where almost every

conceivable situa�on are iden�fied, with the vehicle's response pre-planned. If the programming

fails, human lives are placed at risk. This also draws a�en�on to Thompson’s (1985) classic ‘Trolley

Problem,’ with the ethical debate of whose life to priori�ze in an emergency. The debate is centred

around whether killing one person is worth saving the life of five others. The answer is dependant on

the morals of each individual. A�er 32 years, there is s�ll no clear cut answer to this ques�on. If

14

humans are unable to resolve this debate, then it becomes less likely that the responsibility would

ever be passed onto a machine.

However, with the progression of Ar�ficial Intelligence (AI), Musk (2015) predicted in a tweet “when

self-driving cars become safer than human-driven cars, the public may outlaw the la�er”.

Interpreta�on of nuanced laws is also likely to take a long �me before machine intelligence can

outperform humans, however, the large propor�on of laws that are already somewhat procedural is

likely to be automatable in the very near future. The rela�ve magnitude of laws of this type is

unknown, but is likely to be significant. If those could be automated it would enable commensurate

produc�vity gains.

Figure 2: Laws that can’t and can be automated

Many of urban planning’s law falls into the category of largely procedural. For example, planning

controls that define the maximum buildable space on a site. Checking for compliance involves a

procedural test of each planning control. With the more ambiguous laws set to the side, we can

define what can be programmable.

Translating Language to Code

Mathema�cal expressions are easy to translate into code as they are made up of precise statements.

Language, whether spoken or wri�en, is harder to translate into code due to its arbitrary nature. This

poses the ques�on of whether computer code can capture laws the same way that language can.

The history of Ar�ficial Intelligence (AI) illustrates how technology has a�empted to capture rules to

make decisions that typically require human intelligence. There have been several �mes where AI

system have outperformed humans.At the outset of AI, Allen Newell, J.C. Shaw and Herbet Simon

created the “Logic Theorist” program in 1956. Hailed as a ‘thinking machine,’ the program used

rule-based logic to prove mathema�cal theorems (McAfee and Byrnjolfsson, 2017). Bri�sh

15

philosopher and mathema�cian, Bertrand Russell responded with delight as the program was able to

solve and eloquently express 38 of this theorems from the book “Principia Mathema�ca”. Logic

Theorist used symbolic logic, with numbers, words, and symbols that humans can compute.

AI stalled in the 80s, known as the ‘AI winter,’ as funding dropped (ibid). During this �me, a machine

was capable of mimicking simple human func�ons, solve theorems and mathema�cal problems, and

play chess (Faggella, 2015). Interest ignited again with IBM’s ‘Deep Blue,’ a computer programmed to

play chess, that in 1997 beat the world chess champion. The architecture in deep blue could be

applied to financial modeling, data mining and molecular dynamics (IBM 100, 2017).

To date, AI has made a lot of progress, but not from symbolic logic. In an interview in 2012, Chomsky,

a linguist, was scep�cal of the way AI has progressed “...it was assuming you could achieve things

that required real understanding of systems that were barely understood” (Katz, 2012) whereas the

‘new AI’ — focused on using sta�s�cal learning techniques to be�er mine and predict data — is likely

to yield general principles about the nature of intelligent beings or about cogni�on.’ Technology like

Google Home operates within the behaviourist theory—mimic what they have been programmed to 1

do, however, cannot think for themselves when the command lies outside their scope.

A major difference between computer code and law, is that a script can only be interpreted in one

way. It is read by a computer, which processes exactly what it is told to do. Law, on the other hand,

“depends on the intricacies of natural language, whether spoken, wri�en or printed” (Hildebrandt,

2013). In the procession of transla�ng laws into computer executable code, or even the process of

transla�on in general, "shades of meaning may be lost or distorted" (Perry, 2014). Transla�on

becomes more difficult with laws that have many statements and clauses which alter the

consequence of the condi�on.

Deconstruc�ng how each word contributes to a law allows an understanding of its inten�on.

However, this is easier said than done, there are many words in the English language that change

defini�ons based on context. For example, ‘a set of keys on the table’ can translate to a group of keys

on the table, while ‘set the keys on the table’ means to place or lay the keys on the table. In this case,

‘set’ is a word that has mul�ple defini�ons, however, there are also words that have one meaning

but change based on context. The phrase ‘chuck the mug’ could mean both to throw the mug, or to

simply pass the mug. ‘Chuck’ by defini�on is to throw or toss something carelessly. In this case a mug

isn’t an object you would typically throw, which suggests that the phrase is most likely sugges�ng to

gently hand over the mug. To make it even more difficult, ‘chuck the mug’ could also refer to

1 Google Home is a voice-controlled smart speaker designed for home automa�on

16

throwing away or discarding the mug, it could even refer to a person named Chuck, whose peers

disparagingly deem to be a mug.

In 1979, a research team gave their translator AI program the phrase “The spirit is willing, but the

flesh is weak” to convert to Russian. The program produced the Russian equivalent of “The whisky is

agreeable, but the meat has gone bad” (McAffee and Brynjolfsson, 2017). Humans can naturally

figure out the correct defini�on of the word based on context and inflec�on, however a computer

can not. These sorts of wordplays are analogous to Winograd Schemas (Winograd, 1972) in that the

ambiguity needs context and domain knowledge to resolve.

Symbolic programming languages can understand context and domain knowledge in human

language. Wolfram Language is an example of a symbolic programming lanauge, that uses rewritable

symbols, like in algebra, rather than values to perform calcula�ons. This means inputs “don’t

immediately have to have “values”; they can just be symbolic constructs that stand for themselves"

(Wolfram, 2016). This allows the programming language to understand constructs in human

language. “The Wolfram Language has, for example, a defini�on of what a banana is, broken down

by all kinds of details. So if one says “you should eat a banana”, the language has a way to represent

“a banana”.” (ibid.)

To make the terms in the language explicit, each word is defined with one meaning. That way there is

only one interpreta�on for each word. Once a word has been defined the programming language can

understand its meaning in a sentence and “do explicit computa�ons with it.” (ibid.)

Michael Poulshock is a Legal Knowledge Engineer who translates laws into computer programs and

has experimented with Wolfram Language. In 2015 he started a project called Hammurabi Project,

with the aim “to make law-related determina�ons - that is, to apply legal rules to a given factual

situa�on and report the result.” (Poulshock, 2016). The project is named a�er King Hammurabi, who

is believed to be the first leader to document laws by having them etched onto stone tablets.

Poulshock’s concept behind the Hammurabi Project is not only to make law as code, but to compile

legal rules across many areas of the law, such as taxa�on law and contract law, to then make them

freely available for open use. It is wri�en in Wolfram Language, meaning it is in an executable format

that can understand constructs such as ‘tort’. “Once executable, it can be embedded into our

compu�ng infrastructure where it can drive other applica�ons.” (Poulshock, 2016). While it is an

experiment, the Hammurabi Project can be considered an example of law as code.

17

Chapter Summary

Current programing languages are not sufficient enough to capture the arbitrary nature of all human

language. Symbolic languages, such as Wolfram language make it more probable for more explicit

sentence structures to be wri�en in code. If laws were more explicit, they could wri�en as code.

RESEARCH AREA

‘...urban planning needs to be flexible and dynamic with a view to the future.’

Verebes, Masterplanning the Adaptive City , 2014

Urban planning regula�ons are a type of law that shape our ci�es by defining the opportuni�es and

constraints that allow buildings to be made. In a simplified view, there are two main stakeholders -

the councils who define the regula�ons, and the designers who plan within them. Councils are

challenged by defining regula�ons that need to be applied on a large scale, without being able to

evaluate in detail, the efficiency of the proposed regula�ons. While designers have to then comply

with several documents of regula�ons and translate them into a built form.

The concept of law as code can be applied to the domain of urban planning to automate processes

and resolve problems these councils and developers face. This paper, inves�gates how planning

policies can be made explicit by interpre�ng them as logic within so�ware. If a building regula�on

such as the maximum height of a building became a module within a script, it could be used to create

a permissible building envelope. Crea�ng a series of these modules, each of which represent a

different building law, allow the complex rela�onship between building regula�ons to be visualised

as a city. In this sense, the script allows an explicit transla�on of urban planning laws, leading to a

be�er understanding of the intent behind specific rules, as well as help inform be�er urban

outcomes.

Methodology

The research was conducted using an ac�on based approach. Ac�on based research typically applies

to real life situa�ons, and is a method of “learning by doing” (O'Brien, 1998). It involves a cycle of

planning, doing, observing and reflec�ng to reach a certain outcome. This method was well suited

with the framework set by the industry partner embedded in the research who desire tangible

outcomes.

18

Figure 3: Overall methodology diagram

As shown in the diagram above, there are several factors that contributed to the outcome of this

research. The main elements include:

Cox Architecture

Cox Architecture works at the intersec�on of technology, design and legal frameworks. This thesis

extended Cox’s understanding of all three of those spheres and provided promising direc�ons for

commercial applica�on. Important to Cox was the way the thesis was presented. Web technology will

be core to the way architects communicate content and this thesis substan�ally advanced Cox’s

ability to use this medium.

Interviews with Experts

To gain insight of the planning industry in regards to this research, two Planners were interviewed.

Both interviewees were represen�ng themselves and not their place of work. Key quotes from the

interviews are embedded throughout this paper, while the full transcripts can be found in the

appendix. The interviews helped to define the scope and problem that the prototypes address.

The interviewees were:

David Haron, Senior Planner at NSW Department of Planning & Environment

19

Peter Holt, Specialist in environmental, planning and local government law at Holding Redlich

Literature Review

This research consists of three overall disciplines - law, urban planning and computa�onal design.

Therefore, a review of literature was used to gain an understanding of each field, which was then

applied when asking ques�ons for the interviews. A study of precedents allowed an understanding of

current problems and how they have been solved as is. The study of literature and precedents both

helped shape the prototypes developed as part of this research.

Research Question, Aims and Objective

Computa�onal Law has had success in automa�ng procedural processes within law. Based on this

observa�on, a similar framework can be applied within urban planning. This leads to the core

research ques�on:

How can the application of ‘law as code’ benefit urban planning?

With the aim to:

● Improve transparency and effec�veness when interpre�ng the law

● Allow an intui�ve understanding of complex zoning laws through technology

● Use an interdisciplinary approach to solve problems in urban planning

● Streamline tes�ng and simula�on of new urban schemes

This resulted in the objec�ve to:

Create a script that encodes building regulations, and use it to

generate permissible building envelopes.

In a parallel study by Madeleine Johanson, the building envelopes were used to to test the

compliancy of buildings. This is documented in the thesis Adjudicating by Algorithm: Creating an

open web platform to inform preliminary urban design stages.

20

Prototype tools (Marine Park)

This research resulted in the crea�on of 4 prototype computa�onal tools between the two

theses.The mo�va�ons and a more detailed explana�on of what each tool is will be explained further

on in the thesis.

Humpback: Grasshopper Plugin (Nazmul Khan)

A tool responding to the problem of data interchange formats between GIS and

computa�onal tools. Humpback allows Grasshopper to read and write GeoJSON, a GIS file

format used by urban planners.

Beluga: Building Generation Script (Nazmul Khan)

A script which generates permissible building envelopes in accordance with the Local

Environmental Plan (LEP) and Development Control Plan (DCP) standards of Sydney.

Minke: Versioning Tool for Grasshopper (Nazmul Khan/Madeleine Johanson)

Minke is a tool to detect changes in documents, and manage mul�ple versions using GitHub

Gists.

Dugong: Interactive website (Madeleine Johanson)

Dugong is an open source web GIS pla�orm. It is a decision support tool for urban planning,

ac�ng as a visual communica�on pla�orm. This will be used as a method to represent the

building genera�on script, allowing users to design within the various clauses of the

legisla�on for any site in Sydney through an interac�ve and responsive interface.

21

UNDERSTANDING THE PROBLEM

Planning Controls

In Sydney, the current Local Environmental Plan (LEP) is provided online comprised of in excess of

100 documents, mostly zoning maps. Like the majority of zoning maps that exist, they are

“two-dimensional and fail to provide a clear picture of the code’s impact on development” (Didech,

2015). These maps are available openly online, however the sheer amount of documents makes the

process of obtaining and colla�ng them a challenge. This is apparent when you take into

considera�on that a council is split up into a grid of small maps, and that each regula�on is

documented on a separate map.

Figure 4: Sydney LEP are divided into 24 sheets per planning control.

22

They can also be downloaded as GIS datasets.

Developers not only have to consider the LEP, but also the Development Control Plan (DCP), which

documents more detailed regula�ons such as setbacks. When working with mul�ple sources of

informa�on it becomes even more difficult to obtain an understanding of what regula�ons apply to a

property. Developers could be applying their exper�se within the boundaries defined by zoning laws,

rather than spend �me searching and colla�ng them. The complexity of zoning hinders development,

making building construc�on more costly and �me-consuming.

Redundancy in Regulations

Redundancies in regula�on makes it difficult for architects and property developers to understand

the different regula�ons that are set. For example, the LEP includes the maximum Height of Building

(HOB), and the Floor Space Ra�o (FSR) for each lot, which both factor into the maximum allowed

height of a building.

In an interview with Planning Lawyer Peter Holt, he expressed his opinion on why Local

Environmental Plans generally become complicated. Using the City of Parrama�a as an example, he 2

said that they wanted to have a control that protected the amount of light that was available to

certain areas along the Parrama�a River, but did not “reconcile the heights and FSR’s with the sun

access plane” (Holt, 2017). Height of Building gives a rough indica�on of what building can be built

on a site. For example, a HOB of 80 suggests a tower could be built 80m tall, however there could be

a provision that says you can't go through the sun access plane, which lowers its maximum height.

Figure 5: HOB and sun plane defining the buildings height

2 The City of Parramatta Council, is a local government area in the western suburbs of Sydney

23

Both of these regula�ons coexist with one another and both determine how tall a building can be

made. If this sun access plane intersects a site before the specified HOB, does the HOB regula�on

becomes redundant? The precedence of planning policies can change constraints of a building. “So of

course when somebody is preparing an applica�on [...] they're stuck with an envelope that doesn't

make any sense. [...] They're stuck with that height and that FSR, but with a provision that says, by

the way you can't actually go higher than that, because of the overshadowing caused on the park”

(ibid.).

The redundancy in regula�ons can be traced back to the process of reconciling controls. If the

process of upda�ng exis�ng controls was easy, than perhaps they could be more consistent and

coherent.

Towards 3D Planning Controls

Councils are tasked with defining regula�ons that need to be applied on a large scale, without being

able to evaluate in detail, the effects of the proposed regula�ons. The first problem is that 2D maps

make it difficult to communicate 3D informa�on. However, planners have grown accustomed to

working in 2D.

 “A good planner, and this is what planners do all day every day, knows based on this height and the

FSR that this is the kind of built outcome that could be achieved, but beyond that, that sort of real,

really penetra�ng analysis of the data to try and drive insights, there's not much there” (Holt, 2017).

This a limita�on of working within a 2D environment, most 3D spa�al rela�onships don’t get

considered working in this format. This is shown when planners “do a reasonable job of extruding an

envelope based on a set of controls, but it never really fits the bill because it's been conceived in plan

view based on a par�cular approach and then you're extruding it as 3D”(ibid.). This leads to problems

in the real, 3D world, such as overshadowing, or even the collision of buildings.

Aside from this there are many more issues associated with 2D planning controls. In Sydney, arcades

and small retail stores that are located underground are technically listed as ‘parks’ because the

plans that define their land use are documented on ground level.

‘Essen�ally, if you want a modern planning system, you need modern tools and a modern way of

thinking about it, and that's digital.’ (Haron, 2015). 3D planning controls involve the documenta�on

of regula�ons in a 3D format to allow more considera�on when planning building regula�ons. “The

way that you produce the informa�on ul�mately dictates the outcome.” (Holt, 2017). With 3D

envelopes as an outcome of planning controls you can “assess overshadowing, bulk and scale, impact

24

issues, [...] you can show the rela�onship to the exis�ng streetscape, you can have a li�le person

walk around and look up” (ibid.)

Sydney Cove Redevelopment Authority Scheme

The Sydney Cove Redevelopment Authority Scheme in 1984 has drawn 3D envelopes as an outcome

of planning controls. Building envelopes were hand drawn as axonometric diagrams, which

represented the maximum buildable area of a property.

With this scheme “you knew what you were gonna get. You could price it and from a public

perspec�ve they knew what they were gonna get. (Holt, 2017). Developers were able to know what

Sydney Cove would look like 20 years from now.

Figure 6: Sydney Cove Redevelopment Authority Scheme

The diagrams included a site plan, and site specific informa�on such as roof levels, permi�ed land

use types, maximum floor area and excep�ons to the envelope. This provides a developer with an

instant boundary to work within. “The Rocks is a great outcome, and I suspect that part of that is the

effort that went into checking and cross checking the 3D scheme and the fact that they stuck with

25

the 3D scheme over a long period of �me” (ibid.). Considering it was 1984, the envelopes were not

available in a digital format. However, considering the abundance of technology at our disposal

today, the crea�on of these envelopes could be made a less laborious process.

Precedent Studies

Flux Metro

Flux Metro was a web app that combined mul�ple urban planning sources, both private and public,

and translated them into built form. The applica�on focused specifically on the city of Aus�n, and

visualised permissible building envelopes in accordance to zoning regula�ons rather than a copy of

what exists. Created in 2014, the web app’s interface was a 3D map which users could navigated

through to view specific sites. By doing so developers could easily see a site’s opportuni�es and

developmental risks. The mo�va�on behind the project was that “the complexity and opacity of

zoning hinders development, making building construc�on more costly and �me-consuming”

(Didech, 2015). Using computa�onal techniques, Flux Metro was able to “automa�cally analyze the

mul�tude of regula�ons imposed by the [Land Development Code’s] base and overlay zones,

watersheds, Heritage Tree Ordinance, and the like, instantly providing users key metrics like

maximum building height and minimum setbacks” (ibid.). A fee was charged per property for indepth

informa�on.

Figure 7: Flux Metro Aus�n Preview renders the maximum buildable envelope for a parcel that is

impacted by different building regula�ons (Didech, 2015)

26

Flux’s ini�al ambi�on was to first focus on the city of Aus�n, and then expand to other ci�es.

However, the project was shut down in February 2017, due to the company's interest in shi�ing focus

towards data exchange plugins (Carlile, 2017).

Envelope Beta

Envelope (envelope.city, 2017) is a web applica�on similar to Flux Metro that simulates and analyses

the poten�al of a property on an urban scale. The app was developed with SHoP Architects and is

targeted at the real estate industry. Currently, it is focused on the city of Manha�an, New York, with

more than 35000 proper�es available for analysis. A�er unlocking a property with a bought key,

users can see what can be built based on zoning laws. The website allows the users to manipulate key

characteris�cs of a property, such as its land use, which depending on the zoning laws will generate a

different form. This form is available for download in a 3D file format (OBJ); designers can con�nue to

develop the envelope in external so�ware.

Envelope automates searching and interpre�ng zoning laws to generate dra� analysis, a process that

typically takes 5-10 hours (ibid.). Through Envelope this process is essen�ally automated to the click

of a bu�on. It is able to confirm exis�ng land use and zoning designa�ons in seconds and run

preliminary 3D scenarios in minutes (ibid.).

Figure 8: The interface of Envelope Beta, showing the maximum building envelope for the selected

site (ibid.)

27

Using Envelope, users are able to download floor area metrics and reports which contain appropriate

zoning informa�on according to the site specified.

The web app is s�ll in its beta phase and the company “just secured a $2 million funding round to

develop its pla�orm and launch marke�ng efforts in New York City and beyond.” (Wheatley, 2017).

Envelope’s next step is “to build new products based on its so�ware algorithms that will allow real

estate professionals to ‘search for and visualize poten�al at a neighborhood or urban scale.’” (ibid.).

28

COMPUTATIONAL METHODOLOGY

This chapter discuss what computa�onal design is and the tools used in the discipline. This is

followed by a overview of what tools were used to reach the objec�ve of this research and the

rela�onships between them.

What is Computational Design?

Computa�onal design is a discipline that focuses on embedding computa�onal techniques into the

design process. It derives from a combina�on of architecture, computer science and engineering. A

common misconcep�on is that computa�onal design involves being the end user of computer

so�ware to produce design outcomes. This is typically referred to as a “computer-aided” approach,

rather than “computa�onal” (Menges and Ahlquist, 2011). The key difference from a computer-aided

approach to design is that it is not taking advantage of the computa�onal power of the computer

(Terzidis, 2006). A key part of computa�onal design involves crea�ng custom tools throughout the

design process, which drive design decisions. This o�en involves using programming languages to

ra�onalise 3D forms, that would be rather difficult to design otherwise.Meaning that the outcome is

not necessarily determined by the designer beforehand. This makes computa�onal design

explora�ve by nature, and involves searching and finding solu�ons to complex problems.

While designers who use visual scripts are o�en referred to as “amateur programmers” (Woodbury,

2010), they are able “to ac�vely and intui�vely engage with analysis, this approach has the poten�al

to bring about a change in the way that analysis data is understood and applied within the design

process” (Aish, 2013).

Computational Design tools

Computa�on designers use scrip�ng languages to create programs which generate forms.

Grasshopper 3D is the most commonly used computa�onal design tool in architecture. It is a plugin

for Rhino 3D, a common 3D computer aided dra�ing package used by architects to model built

forms. In Grasshopper, data is manipulated through a visual scrip�ng language where a network of

rela�onships to shape a parametric model (Woodbury, 2010).

29

Figure 9: A simple function in Grasshopper with basic transformation of data

The visual scrip�ng program has a library of components which perform specific tasks. For example, a

component can be used to draw a sphere given a point in space and a radius. Parametric workflows

allow designers to iterate and analyse many configura�ons of design much faster than tradi�onal

methods (Woodbury, 2010). Designs can be programed to respond to real-world s�muli, genera�ng a

specialised form. This is done through the construc�on of rela�onships within the script. As a basic

example, the height of box can be generated from its distance to a point in space.

30

Figure 10: The figure shows parametric relationship between a point and multiple boxes, and

the script used to generate it.

Grasshopper comes with the nodes needed to perform common opera�ons. Also users can make

their own specialised components, which can contribute to the func�onality of the so�ware. These

components are o�en packaged as plugins, and are available online for download. For example,

Ladybug is an open source environmental plugin for Grasshopper. It extends Grasshoppers ability to

perform environmental analysis.

Addressing the Objective

Objective: to create a script that encodes building regulations, and

use it to generate permissible building envelopes

What is a permissible building envelope?

In this thesis a permissible building envelope has been defined as a 3D form that determines the

maximum buildable space on a property. It Includes appropriate setbacks and height restric�ons, and

is a boundary that developers should generally work within to ensure that they are complying with

the fundamental building regula�ons. It's important to note that this form can change depending on

different types of landuse. As an example, a commercial building may be allowed to be built taller

than a residen�al building. For the purpose of this research, we haven’t considered bonuses.

“I don't think [bonuses] are ra�onal in the sense that you could convert them to program language,

they're just a bit kind of like, here's a bucket of six or eight good things and if you do those six or

eight great things, then we'll give you even more goodness.”

Peter Holt, 2017

Instead, we have considered the permissible building envelope the first phase of tes�ng whether a

building is compliant.

The Script — Beluga

Building regula�ons are laws that dictate how a physical form is generated. Grasshopper allows the

scrip�ng of geometric opera�ons in Rhino. Based on this, and its popularity in the discipline of

architecture, Grasshopper will be used as the computa�onal scrip�ng tool to generate permissible

building envelopes.

31

In a computer program there are generally three elements:

1. the input

2. the process

3. and, the output

Figure 11: diagram of beluga script on a fundamental level

Beluga’s main func�on is to create building envelopes based on planning controls. With this

informa�on we can make some basic assump�ons of what the inputs of the script will be:

● Cadastral lots - the boundary of a property as a 2D polygon

● Height of Building (HOB) Control

● Floor Space Ra�o (FSR) Control

● Solar planes as a 3D geometry

● Setback rules

Computational Workflow

While HOB and FSR are typically documented in PDF’s that are available online, they are also

available for download as GIS datasets. Australian Urban Research Infrastructure Network (AURIN) is

an ini�a�ve of the Australian Government that “brings together and streamlines access to more than

1,800 datasets previously difficult, �me consuming or costly to obtain” (AURIN, 2010) through a web

pla�orm. The cadastral lots, HOB and FSR policies of Sydney are available for download on the

website, however only in a format that Grasshopper can’t read. This so�ware limita�on lead the

research in the following computa�onal workflow.

32

Figure 12: Rela�onship between prototype tools in this research

1. The LEP planning controls were downloaded as GeoJSON files from Aurin.org.

2. Humpback was created as a tool to convert the GeoJSON file into geometry in Grasshopper.

3. Grasshopper interprets the planning controls and uses them to generate permissible building

envelopes. This script is called Beluga and creates a visualisa�on of urban planning policies.

4. These building forms then get sent to Humpback, which converts the geometry back into

GeoJSON.

5. The GeoJSON is stored using Minke, where changes and previous versions can be seen.

33

Figure 13: Alternate methodology diagram

As a parallel study, the building envelopes get turned in GeoJSON, and then visualised on an

interac�ve website developed called Dugong, where it is used to test whether building designs are

compliant. This research is documented in Adjudicating by Algorithm: Creating an open web platform

for interaction with the law.

Modularisation as a Scripting Philosophy

Although computa�onal design in architecture is a rela�vely new field, it has already established

scrip�ng prac�ces that tend to be project specific as a result of being rapidly developed.

Architects that program “do enough to accomplish the task at hand, but they don’t have the �me or

inclina�on to do it strategically” (Davis, 2015). This lack of strategy leads to computa�onal solu�ons

that are only applicable to very specific projects, preven�ng its re-applica�on to other scenarios. This

results in func�ons needing to be remade, when they could be reused. While visual scripts are

generally easier to read than wri�en code, “it can be difficult to know what to erase, where to make

the edit, and what needs rela�ng and repairing, because the visual tangle of rela�onships within the

script can obfuscate–rather than reveal–the func�on and rela�ons of opera�ons” (Davis et al., 2011).

This makes it especially difficult when reading scripts that are wri�en by another author.

Crea�ng a script that encompasses various building regula�ons requires a great deal of complexity.

Therefore, a strategy for developing the script was considered to maximise efficiency in long term

maintenance.

So�ware engineering is a more established discipline that has resolves many of the problems

computa�onal designers face. In the 1960s so�ware developers feared that unstructured programs

34

were becoming too complex for humans to read and write (Davis et al., 2011). This is a result of

GOTO statements, which were used to jump to another line of script based on a condi�on. A series of

these statement resulted in scripts that were convoluted and hard to maintain. As a response,

structured programming methods became more popular which involved the reuse of certain

func�ons by containing them within modules. Each module within a script can be tested in isola�on,

allowing so�ware developers to flag and fix errors in their scripts more easily.

From this, we can extract that there is need for improvement in scrip�ng prac�ces within the

computa�onal design discipline. Perhaps rather than “accomplishing the task at hand” (Davis, 2015),

scripts should be wri�en as func�ons that can be abstracted and used for mul�ple purposes.

Structured programming is a method that can be adopted by computa�onal designers. A series of

modules can be collated to create a toolset, which performs flexible small tasks.

If a single module captured a building regula�on, it could have its own inputs which determine how it

influences a building lot. A series of these modules, each capturing a different building regula�on,

would allow a complex rela�onship between each policy and how they influence the permissible

building form. This strategy was used when developing Beluga and Humpback, making the flow of

data between modules easy to understand.

35

HUMPBACK

Immediately, we are faced with the challenge of impor�ng the cadastral lots and planning controls

into Grasshopper. While these datasets are available openly online, they are only available for

download in a limited number of file formats. This includes Shapefile, CSV, and GeoJSON. Humpback

is a tool developed as a response to this problem. It reads and writes GeoJSON files in Grasshopper.

Rather than“accomplishing the task at hand” (Davis, 2015), Cox Architecture as an industry partner

desired a toolset that could be used for commercial applica�on outside of this research.

This chapter argues that there is evidence that the incompa�bility of data between so�ware

poten�ally creates a barrier between computa�onal design and urban planning technologies. This

observa�on is shared in general terms by Kuus (2002) who states that “The lack of universally

adopted standards has produced a situa�on, where the communica�on between different systems is

made hard.” When transla�ng this argument to urban design, one could argue that this poten�ally

inhibits a computa�onal designer’s ability to analyse and generate urban datasets.

An inves�ga�on into the rela�onship between so�ware and file formats between computa�onal

design and urban planning, allow us to understand what is limi�ng the integra�on of computa�onal

design into the urban planning industry.

Data Interchange Formats for GIS

Urban planners have been strong advocates for the technological development and deployment of

Geographical Informa�on Systems (GIS) (Drummond, 2008). GIS allows urban planners to build

planning support systems, where spa�al and geographic data can be stored, managed, analysed and

maintained. These data can be stored in various file formats, for example ESRI’s Shapefile, File

Geodatabase (GDB) and many others. The file types differ depending on the program it was

developed for, and the format used to store informa�on. Some are interchangeable between GIS

pla�orms, but not all. The current industry standard file format for GIS so�ware is ESRI’s Shapefile

(SHP). However, 3 files make up this format, one with the feature geometry, one with the shape

index posi�on and one with the a�ribute data (GISGeography, 2017).

“GeoJSON is a format for encoding a variety of geographic data structures” (GeoJSON.org, 2017). It is

an extension of JavaScript Object Nota�on (JSON). The main differences between this format and

Shapefile is that GeoJSON contains all geometry and a�ributes in one file, and is “easy for humans to

read and write... and easy for machines to parse and generate” (json.org, 2017). “JSON is an open

36

standard data-interchange format that uses plain text to transmit data objects” (Hickok, 2014). A

defining characteris�c of GeoJSON is its use of a key and value system to parse informa�on. An

element can have keys and values a�ached to it.

{

 “type” : “polygon”

“colour” : “grey”

“height” : “80”

}

In this example the key “type” defines what type of geometry it is, “colour” defines what colour the

geometry gets displayed as, and “height” determines how many metres the geometry gets moved off

the ground. The specific key names are not predetermined, it is up to the en�ty that creates the

GeoJSON. The keys and values are just text, they don’t really mean anything un�l so�ware interprets

those specific keys and values. This makes GeoJSON the ideal file format for web GIS applica�ons,

such as ArcGIS Online and Mapbox. In its crea�on, GeoJSON has been ‘derived from preexis�ng open

geographic informa�on system standards and have been streamlined to be�er suit web applica�on

development using JSON’ (GeoJSON.org, 2017). GeoJSON is typically used for data interchange in GIS

so�ware as an ‘open standard and has been widely adopted’ (Jones, 2013). Popular GIS systems that

use GeoJSON include ArcGIS, Aurin, QGIS and Mapbox.

Motivations for Humpback

Computa�onal tools allow us to create dynamic itera�ve architectural forms, whereas GIS pla�orms

enable us to display and analyse spa�al data on a geographical map, o�en to solve spa�al urban

func�ons.

Yet, the incompa�bility of data formats between computa�onal tools and GIS remains a challenge.

Plugins for the Grasshopper environment extend the program’s toolset, but currently there are no

plugins for Grasshopper which support GeoJSON conversion, a popular file format within GIS. This

limits Grasshopper’s compa�bility with GIS systems, Humpback aims to remedy this lacuna.

In 2002, Kuss acknowledged the gap between computa�onal tools and GIS in ‘The Interoperability of

Geographical Informa�on Systems.’ “[New standards of prac�se] may increase the usage of

geospa�al data, bringing new people to the world of GIS by enabling them easily supplement their

databases”. If a simple, powerful workflow connected the two, be�er informed urban possibili�es

can be explored. This is where Humpback contributes as it allows computa�onal tools and GIS

pla�orms to speak the same digital language, crea�ng a bi-direc�onal workflow by extending

37

Grasshopper’s capability to read and write JSON files. Janssen (2016) outlined this relevance sta�ng

that “Workflows capable of integra�ng geographic mapping and parametric modelling systems could

enable various rapid itera�ve urban prototyping methods to be developed.”

A simplified flow of data between computa�onal tools and GIS pla�orms will cul�vate a symbio�c

rela�onship. Enabling the adop�on of computa�onal tools into GIS will allow itera�ve, smarter

designs to expand into mainstream architecture. GIS allow the designer to understand the context of

the site and make informed design decisions based on data (Kuus, 2002). Computa�onal tools add

another dimension of data, the dimension of op�mised possibility.

In regards to this research, Humpback was developed in order to import in planning control

boundaries from GIS to Grasshopper, and vice versa. This allowed the computa�onal things to

happen within within a computa�onal environment, and then be put back into a GIS environment

that urban planners are more familiar with.

Open Formats as a Method

Independent development in one field may leave the other behind in terms of technology and

methodology (Drummond, 2008). Consequently, disciplines must share their emerging

advancements if they are to grow and develop (Senske, 2005). One way of sharing this knowledge is

through the use of open file formats to enable transparency between disciplines. Using a common

format to interchange data between so�ware allows communica�on between the pla�orms. An

open file format is described as, “a freely available published specifica�on which places no

restric�ons, monetary or otherwise, upon its use” (Open Defini�on, 2017).

An example of a common open file format is docx for Microso� Word. The move to open formats

“allow[s] developers to more easily create applica�ons that can access data within Word

documents…to be more open and more transparent” (Zetlin, 2010).

Programs can interpret and use data that may otherwise be incompa�ble (Kuus, 2002). Humpback

converts geometry and its a�ributes to a GeoJSON file, an open format (GeoJSON.org, 2017).

Forma�ng informa�on in this way makes it simpler for different tools to access and use the data. In

the built environment, open datasets and formats allow us to make more informed urban design

strategies on a bigger pla�orm. Combining GIS and Computa�onal Design tools enables an

alterna�ve workflow, using flexible tools to inform the design.

38

Evaluation of Existing Tools

Currently, there are methods for urban analysis within Grasshopper, each which have their own

limita�ons.

In 2011, a feature request for impor�ng GIS data to Grasshopper to make the “data as accessible as

possible for scrip�ng” (Golder, 2011) was made on the Grasshopper forums. No conclusion was

reached, but it indicated the need in the Grasshopper community for this tool.

Meerkat

In 2014, Meerkat was released on Food4Rhino, an online pla�orm to distribute Grasshopper plugins.

Meerkat is a set of tools used generate Grasshopper geometry from GIS shape files, developed by

Nathan Lowe up to 2015 (last entry). In this tool, Shapefiles can be batch 'geolocated and cropped' in

a web browser (Grasshopper MeerkatGIS, 2017). For mapping urban trends, Webb (2014) used

Grasshopper and the plugin MeerkatGIS, which “not only facilitates GIS shapefile importa�on, but

also trims mul�ple GIS shapefiles to limit the data to a selected region.” This produces ‘.mkgis’ files

which is no longer compa�ble with GIS programs. Users report that “Formats like these [Shapefiles]

are a pain to work with. You can't just open them up in a editor and make changes. In addi�on, the

requirement for mul�ple files is a problem for web applica�ons where you want to download a single

file into the browser, access its data and render them in JavaScript” (Jones, 2013). Hence, in an ideal

workflow, informa�on can flow smoothly in both direc�ons. Formats like GeoJSON facilitate this.

_EXPORT

Also in 2015, a Grasshopper component called ‘_EXPORT’ by Guillaume Meunier was published on

the discussion forums (Alliages, 2017). However, this required mul�ple steps to install, and depended

on external plugins and Python script to run in Grasshopper.

Mobius

Janssen’s web parametric modeling system, Mobius, can be used to create modular workflows to GIS

programs, such as QGIS. (Janssen, 2016). However, this is not specific to a Grasshopper workflow.

Janssen’s work showed how through an open source file format, GeoJSON, informa�on can be

exchanged between different tools. This creates a bi-direc�onal pipeline that can receive, transform,

and send informa�on. The paper demonstrates how computa�onal tools can be incorporated in and

urban planning workflow.

39

Based on the evalua�on of work by others we iden�fied the following principles that helped us to

develop Humpback. With Grasshopper you are able to create your own tools that can be applied to

geographical datasets. While this may be more complicated and �me consuming to set up, it can lead

to more flexible analysis, where parameters can be adjusted to suit the specific task. “The

standardiza�on of spa�al data formats and the methods by which they are exchanged is cul�va�ng

an environment of geospa�al interoperability, and allows various so�ware components to

communicate more easily” (Kuus, 2002). This shows relevance of breaking the current barriers

between GIS so�ware and computa�onal tools like Grasshopper.

From exis�ng examples, the predecessors a�empt to close the gap between GIS and computa�onal

tools. Currently Meerkat and _EXPORT only support a one-direc�onal flow of data. Mobius allows

the bi-direc�onal flow from computa�onal tools. Humpback contributes a solu�on, suppor�ng a

bi-direc�onal flow from Grasshopper and any GIS applica�on that uses GeoJSON. Humpback is a

translator for computa�onal forms. Forms are converted to an open source file type that can be read

and edited by both GIS so�ware and computa�onal tools. By cu�ng out complicated procedural

steps, a simple func�onal workflow is created (Janssen, 2016).

Development of Humpback

Humpback was developed in an�cipa�on to be used by a broader audience than just the authors.

Since GeoJSON is an open format, wri�ng a script to interpret the format was set out to be an

achievable goal.

The components created were based on a series of text-based manipula�ons, such as extrac�ng the

list of coordinates in a GeoJSON file, and then using them to create points which can be connected

together to make a polyline in Grasshopper. To create GeoJSON, the script does the reverse of this

and deconstructs polylines into points that are turned into coordinates, which are then forma�ed in

the correct GeoJSON syntax.

Humpback is easy to find and install from Food4Rhino (h�p://www.food4rhino.com/app/humpback)

and contains thorough documenta�on with sample files and examples. The plugin contains 6

components, outlined in the following chapter. It works with both 2D and 3D forms. This means that

GIS pla�orms capable of displaying 3D forms, such as Mapbox, are able to visualise urban varia�ons

in an open format.

SInce its ini�al release, a second version of Humpback has been released. Humpback 1.1 includes

basic bug fixes as well as faster working components.

40

Humpback Components

Component Descrip�on Input Output

Orient (N, E)

Orients geometry

to specified

Northing and

Eas�ng

Coordinates.

Geometry (G) Geometry to

move.

Initial Plane (P)

Plane to move geometry

from.

Northing (N)

Specified Northing

coordinates as a number

Easting(E)

Specified Eas�ng

coordinates as floa�ng

point eg. 151.203655

Geometry (G) - Reoriented

geometry

Polygon to GeoJSON

Writes a polygon

to a GeoJSON file,

where keys and

values can be

defined.

Polyline Curve (P)

Polygon or list of polygons

to convert to GeoJSON.

Key (K)

 Proper�es used to describe

geometry. To specify

height, base height and

colour, use the following

keys: height, base_height,

colour

Value (V)

Values of proper�es.

GeoJSON (J)

Produces a GeoJSON Feature

Collec�on.

GeoJSON to Polygon

Converts GeoJSON

into Grasshopper

geometry.

GeoJSON (J)

FeatureCollec�on

containing geometry type

objects. Only accepts

Polyline Curve (P)

Closed Polyline

41

eas�ng, northing (N,E)

coordinates.

Keys (K)

Outputs keys found in

proper�es

Values (V)

Outputs values found in

proper�es

Deconstruct Extrusions

Deconstructs

simple extrusions

into polylines,

heights, and base

heights for later

use in ‘Polygon to

GeoJSON

component’.

Brep (B)

Extruded or capped Breps.

Must be extruded in the z

axis.

Polyline (Crv)

Projected base polyline of

Brep

Height (H)

Height of Brep. The distance

of extrusion.

Base Height (BH)

The height of the base of the

brep from the ground XY

Plane.

GeoJSON Merge

Merges mul�ple

GeoJSON

FeatureCollec�on

files as one

FeatureCollec�on

GeoJSON Datasets (D)

Accept mul�ple Feature

Collec�ons. Created for

merging the outputs of

Polygon to GeoJSON

components.

GeoJSON(J)

Merged GeoJSON file as one

FeatureCollec�on

File Write

Exports text files Content

text for export. In this

case, geoJSON.

File Path

des�na�on of file. eg.

Exports text file to

specified file path

42

C:\Users\YourName\Des

ktop

File Name

Name of file to export.

Includes the file type. eg.

Filename.JSON

Activate

Boolean toggle, ac�vates

export. If True, the file

will update live.

Table 1: Humpback Components

Example workflow

The following example documents the process of conver�ng a simple 3D building into

GeoJSON, which will then be used to render on the popular web GIS pla�orm, Mapbox.

The Rhino model contains a building that has been constructed from ver�cally extruded

closed curves. The model is constrained to ver�cally extruded forms because GeoJSON only

documents 2D geometry. However, Mapbox can extract defined heights from the GeoJSON

file and use them to render 3D geometry.

43

Figure 14: Rhino model of building to be converted into GeoJSON

Figure 15: Example Grasshopper script for the workflow below

1) The first step is to deconstruct the extrusions into keys and variables that can be

associated to them. This can be done using the Deconstruct Extrusion component, which

44

extracts the form into polylines, heights, and base heights for later use in ‘Polygon to

GeoJSON component’.

2) Since the building was modeled at the center of the document (0,0) it needs to be

moved to its correct coordinates in rela�on to the world. This involves using the Orient

(N,E) component, which moves any geometry to specified Northing and Eas�ngs from a

reference point. The base curves that were generated in the previous step will be oriented

using this component.

3) Now that the base curves are in the correct loca�on, the next step is to use the

Polygon to GeoJSON component, which writes polylines into GeoJSON where key and

values can be defined. In order to render the buildings in Mapbox, the keys of height ,

base_height , and colour were specified. The values for height, and base_height are

outputs of the Deconstruct Extrusion component, while the colour orange was set using a

text panel. The list should be structured so that the first branch of data is associated with

the first key. The key can be any characteris�c that is to be associated with the geometry,

(eg. colour, layer, tag) which can then be interpolated and read by the GIS program. A key

can either have a 1:1 rela�onship to a key, or a rela�onship to many, allowing values to be

associated with mul�ple polygons. The component will now output a valid GeoJSON string.

4) The final step is to export the GeoJSON string to a valid file. This is a simple process

using the File Write component, where the user must define a file path and filename for

the GeoJSON. A boolean toggle ac�vates the export.

Once the file has been saved, the GeoJSON can be viewed on a GIS pla�orm. A web GIS

pla�orm like Mapbox can extract and interpret the informa�on in the GeoJSON file and

render it in the server. Such a pla�orm has been developed for this project, UrbanCoDe,

which can be found at h�ps://madeleinejohanson.github.io/UrbanCoDe. This web

applica�on visualises the data contained, and has the ability to turn layer tags within the

GeoJSON on and off. This shows the flexibility of GeoJSON within web GIS applica�ons.

45

Figure 16: Rendered building in Mapbox

In the same way, the outcomes of the building genera�on scripts were rendered onto

Mapbox, allowing a visualisa�on of permissible building forms within its geographic

context. This can be found at: https://nazmulazimkhan.github.io/beluga/

Chapter Summary
Humpback is a bridging tool for GIS and computa�onal tools to share informa�on and func�onality.

Open source data has enabled so�ware to speak the same digital language. Cul�va�ng a symbio�c

rela�onship, Humpback allows a simplified flow of data between pla�orms. Based on this data,

informed design decisions about the context of the site can be made. Analysing urban datasets is

made difficult without this standardiza�on of data (Kuus, 2002). Mainstream architecture can benefit

from the smarter designs generated from this itera�ve workflow. Using this new method with

Humpback, the barrier between GIS packages and computa�onal so�ware can be broken.

BELUGA

Beluga was developed as part of this research to show how law as code can support a be�er

experience for both designers and policy makers. Using LEP controls and associa�ng them with

cadastral lot geometry, 3D legal forms can be generated. The tool uses building regula�ons to

generate 3D forms which represent the maximum buildable space with no bonuses. We refer to

these as permissible building envelopes. The LEP controls specified are changeable parameters

within the script, allowing the impact of altera�ons to be seen in real �me.

46

Using the cadastral lot geometry and LEP controls as inputs, the script generates a permissible

building envelope as an output. Crea�ng a script that encompasses various building regula�ons

requires a great level of complexity. Beluga captures each building regula�on as single module within

the script. Each with its own specific processes that determine the transforma�on of a building lot.

Importing Planning Controls Using Humpback

The first step in crea�ng Beluga is to bring in GIS datasets from Aurin that contain the cadastral lot

geometry as well as planning control boundaries. Humpback streamlines this process. The GeoJSON

to Polyline component converts GeoJSON files into geometry, and outputs the associated keys and

values. When developing the script a small sec�on of Sydney’s CBD was chosen. Sydney was chosen

as a case study city by Cox Architecture, who could use a visualisa�on of sydney's planning laws to

inform decisions within the prac�ce. However, Beluga could be poten�ally applied to any city.

47

Figure 17: Grasshopper script conver�ng HOB GeoJSON file into geometry. In this case the HOB data

is stored in a key called max_b_h

Assigning Controls

With the datasets in Grasshopper, the next step is to associate the correct planning control to the

cadastral lots. This is achieved by tes�ng whether the boundary of a planning control is colliding with

a cadastral lot. The script does this by tes�ng whether the centre point of a cadastral lot is inside a

HOB or FSR boundary. If the point is within a boundary then the cadastral lot inherits the property of

the planning control.

Figure 18: HOB data associated with cadastral outlines

Evaluating Lots

The Sydney Development Control Plan (DCP) contains ambiguous terms such as “front and side

setbacks”. The benefit of designing a system where the law is code, is that you can program it to

figure out what defines a front face, back face or side face.

The next module in the script does exactly this, it determines the faces on a cadastral lot.

48

Figure 19: Evalua�on of street facing edges

In the current planning control system “you just set the one height and the one FSR across all of

them, and then you use clause 4.6 to vary the standard in order to get the outcome on the corner

block. Whereas in a more sophis�cated system you could run the analysis of that, and the controls

that were appropriate for the corner block would be quite different controls from the controls that

are applied to all of the blocks that have the straight up frontages.”

(Holt, 2017)

Embedding intelligence into a script to understand ambiguous terms allows for less room for

interpreta�on, and exploita�on by developers of exis�ng planning controls. This way the law

becomes explicit and it's easy to determine whether a developer is complying with building code.

Setbacks and Height of Building

Given that we know what the HOB of each cadastral lot is, and the front, side and back face for each,

we can use this informa�on to generate a primary permissible envelope.

The next step is to input the correct setback distances, such as a setback of 7 metres on a street

facing facade a�er 45 metres of height. This is defined in a module that allows users to input a

setback for a specified height and side.

49

Figure 20: Setback rules defined in Beluga

A�er the setbacks have been defined, the cadastral lots are extruded up to a height of 45m, then

each face gets set back by the correct distance. The building con�nues to extrude un�l it reaches its

maximum height defined by the HOB control. However, if no setback is specified then the HOB

module will disregard setback and create a simple extruded form.

Figure 21: Permissible building envelopes based on HOB and setback data

50

Solar Access Planes

As different planning controls are added into the script, the logic determining how each permissible

building envelope becomes more complex. The building geometry is passed on from module to

module, star�ng from cadastral lots and resul�ng in permissible building envelopes. This strategy was

used to understand how each building regula�on impacts the building lots. Each process that

generates the permissible building envelope can be seen explicitly. As a consequence, it becomes

easier to test whether the modules are doing the correct transforma�ons.

As an addi�on to the HOB module, a solar access module can be used to determine the maximum

height of a building. This was introduced as a response to the Central Sydney Planning Strategy

(Central Sydney Planning Strategy, 2016) which would allow buildings to “soar to heights of 310

metres, up from the current restric�on of 235 metres” (Saulwick and Visen�n, 2016) based on solar

access to parks and specified public spaces. These solar panels were modelled manually in Rhino

from plans found in the Central Sydney Planning Strategy

The solar access module is used a�er the the preliminary building envelope is created. If the

envelopes intersects with this solar plane, the maximum building height gets lowered to this new

height.

Figure 22: Solar Access controlling the maximum height of building

Floor Space Ratio

Floor space ra�o or FSR defines the rela�onship between the area of a cadastral and the total floor

area of what's built on it. Beluga is scripted to make the largest volume possible. If the FSR doesn’t

allow the building to reach its maximum height defined previously, the floorplate of the buildings

51

become smaller.

An issue when developing this script was how the FSR relates to the HOB. If a FSR allows a building to

be 10 levels high, but the HOB only allows 8 levels, the permissible building envelope can only

become 8 levels high. Similar to the HOB and sun access policies, precedence plays an important role

to the genera�on of a building envelope. To resolve this, the FSR can only be applied once a

maximum height is already established, whether that be from Height of building controls, or solar

access.

Figure 23: (Top) FSR of 8 (Bo�om) FSR of 12. If the HOB control has already defined the height, then

the script can’t exceed that.

52

Chapter Summary

Beluga allows an instant visualisa�on of how changing the parameters to building policies affects the

city on a large scale. By modifying regula�ons, users can explore how different urban schemes or

outcomes can be made. For example, what the city would look like if every lot was built based on

solar access to parks and public spaces.

Currently Beluga consists of the following modules: HOB, FSR, Setback, and Solar Access. There are

many more modules that could be scripted for future work, such as modules that modify the applied

regula�ons based on land use.

In the future future increasingly complex processes and clauses can be added into the program.

Poten�ally, if a building as 3D geometry were to be put into the program, it could test the buildings

feasibility and compliance with the law. A report could be made of all the building regula�ons and

constraints that contribute to that lot, as well as indicate which laws the building is currently

complying and not complying with. The fundamental idea behind this is explored in Madeleine

Johanson’s thesis Adjudicating by Algorithm: Creating an open web platform to inform preliminary

urban design stages.

53

MINKE

This chapter argues that the process of versioning laws could be automated through version control

systems such as GitHub. A prototype of a plugin for Grasshopper was developed called Minke which

allows a bi-direc�onal workflow between Grasshopper and Gists.

Versioning of the Law

Laws have been documented as early as 1754 BC when Babylonian King Hammurabi had his 282 laws

set into stone. “The Code of Hammurabi includes many harsh punishments, some�mes demanding

the removal of the guilty party’s tongue, hands, breasts, eye or ear” (History.com Staff, 2009). As

humanity has evolved over �me, so have our morals. Therefore it’s inevitable for our laws to stay

constant. “Each �me a new U.S. law is enacted, it enters a backdrop of approximately 22 million

words of exis�ng law. [...] Seeing these changes in context would help lawmakers and the public

be�er understand their impact” (Hershowitz, 2015). From the eyes of a programmer, there are many

ways to achieve this outcome through version control systems, that have yet to be adopted in

prac�ce.

Version Control Systems

“Programming is a three-way rela�onship between a programmer, some source code, and the

computer it's meant to run on” (Shirky,2012). This rela�onship is simple when there’s only one

programmer, however add mul�ple programmers and you could have poten�al chaos.

In programming, it is common for the input of one func�on to depend on the output of others. All of

the func�ons of a script �e together in a complex rela�onship to perform the overall task of a

program. When mul�ple programmers start edi�ng the same script, the change of one func�on can

impact others. Without coordina�on, func�ons within scripts are overwri�en causing errors in the

overall output of the program.

As a response, programmers have developed ways to manage large projects when working with

mul�ple programmers. The standard solu�on to this problem is to use of a version control system,

which “provides a canonical copy of the so�ware on a server somewhere. The only programmers

who can change it are people who've specifically been given permission to access it, and they're only

allowed to access the sub-sec�on of it that they have permission to change” (Shirky, 2012).

54

Git

Git is a distributed version control system that can detect and keep track of changes in documents. It

is able to append changes made by mul�ple people, making it ideal for open source collabora�on. It

was created in 2005 by Linus Torvalds, the creator of the open-source opera�ng system Linux. There

are a few factors that make Git different to regular version control systems. The most dis�nguishing

feature is its ability to branch and merge independent versions of a document. This allows developers

to clone an en�re copy of a document, make their own changes, and then merge back with the

source document, even if it has been altered by someone else since it was cloned. It also gives the

programmer the choice of what changes they want to push back to the source.

GitHub

GitHub is an web-based pla�orm that uses Git to allow developers to store, manage and host

projects online. It makes Git accessible to a larger audience through its web interface. A�er crea�ng

an account, users can create a repository that contains the contents of a project.

GitHub's versioning system can be applied to the process of crea�ng and upda�ng laws; there are

several GitHub repositories that a�empt to do so. Stefan Wehrmeyer is a German so�ware

developer who downloaded the German federal government's complete laws and regula�ons and

then uploaded them onto GitHub. This was done with the intent to “make it easy for German voters

to track changes to the laws – and to also give lawmakers a vision of the future” (McMillan, 2012).

Wehrmeyer periodically downloaded the complete German legal code and then used Git and custom

tools to figure out what had changed (ibid). Those changes were then submi�ed into the repository

for other users to see. This workflow was made achievable through the German government pos�ng

their laws publicly on the internet in an XML format. The repository allows users to download the

current set of laws, and be able to see where specific amendments have been made throughout

�me.

As laws get more complex, the amount of versions increase, documen�ng how laws change over a

large �me period. From 2012 to 2013, 77 branches of the repository were made, meaning there are

77 versions of the master version, each branch marking new changes and amendments to the

documents.

As men�oned earlier in this paper, Hammurabi Project is also stored in GitHub, allowing users to see

how the executable code is developed over�me.

55

Development of Minke

Gist is a service provided by GitHub that allows you share code with other people. You can share

small snippets of code, par�cular files, or an en�re project. A Gist is a mini repository meaning users

can clone and make changes to the code, just like in GitHub.

The mo�va�on behind Minke was to use Gists as a way to store, share and version the law. However,

if a script is determining the law, what should be stored? The inputs of the script, the process to

create it, or the output? These could all poten�ally be stored using Gists, however for the purpose of

this research the building envelopes were versioned.

Using Humpback, the permissible building envelopes can be converted into GeoJSON, which can be

posted as a Gist. As building policies change, the permissible envelopes get updated, and a new

geojson can be added to the repository. Gist will automa�cally version and detect changes in the

document, allowing you to see what has changed.

GitHub's Applica�on Programming Interface (API) allows so�ware developers to incorporate the

services of Gist in websites that use Javascript. The same API was used to script components in

Grasshopper to POST, PATCH and GET Gists.

POST is a func�on in the API which allows you to create a Gist. It returns a URL containing the

contents of the code which can be shared and cloned. It requires a filename, the content of the file,

and a descrip�on of what the content is.

PATCH allows you to edit an exis�ng Gist. When a Gist is edited it can start to version changes in

documents, allowing you to see how the Gist has developed over �me. The PATCH func�on requires

the same inputs as POST.

GET is a func�on that allows you to get the contents of an exis�ng Gist. It can be any version that is

stored within the Gist’s history. It requires the URL of a GIST.

These three func�ons were turned into modules in Grasshopper. They all require a ‘metadata’ input,

which is the users GitHub account name, followed by a token created by GitHub which acts as a

password by authen�ca�ng the user. Informa�on Security is not considered in this prototype, but will

be addressed in the produc�on version.

56

There are three main workflows for using Minke to POST, PATCH AND GET Gists.

Figure 24: Pos�ng a Gist, the process of patching Gists is similar.

Figure 25: Ge�ng Gists from a URL

Why hasn’t distributed version control already been

adopted in Law?

Git has been around since 2005, and soon a�er GitHub was developed in 2008. So with this

knowledge, what has been preven�ng distributed version control to be adopted in legal prac�ce?

This topic was raised on the ques�on and answer website Quora.com, where a user asked “Public

Policy: What are the nontechnical barriers to adop�ng a version control system for use in wri�ng bills

and new laws?”

57

Ari Hershowitz, Director of Open Government, responded with the following venn diagram:

Figure 26: People who have a Github Account vs Lawyers

“If you squint, you might be able to find a couple of intersec�ons, but not many. [...]The legal

community is unaware of the powerful text-based tools that could make legal work more accessible

to the public and more efficient. Meanwhile, there is no ‘version control’ lobby in Congress. So

although adding version control would make a tremendous difference to the efficiency of the legal

process, few people understand the value that it would bring.”

Hershowitz, 2011

Lawyersongithub (h�ps://github.com/dpp/lawyersongithub) is a GitHub repository, which as the

name suggests, documents the lawyers that have GitHub accounts. To join the lawyer makes a pull

request proving you're a lawyer with bar membership. To date there are 28 lawyers on GitHub, 3 3

lawyers at GitHub, and 6 law students on GitHub.

3 Pull requests let you tell others about changes you've pushed to a GitHub repository

58

SIGNIFICANCE OF SCRIPTING REGULATIONS

This chapter explores the significance of documen�ng laws as code by highligh�ng poten�al uses of

Beluga.

Mass Iterations

The advantage of crea�ng a parametric script, is that those parameters can be changed at will.

Beluga allows users to change the values contained by planning controls. This is done through the

interface of Rhino, where a user selects a boundary of a planning control and changes its a�ached

value.

To demonstrate the capabili�es of Beluga, the following itera�ons of the CIty of Sydney were made:

Iteration Policies

FSR:
From LEP

HOB:
From LEP

Sun Access

Setbacks

59

HOB:
From LEP

Sun Access

Setbacks

FSR:
LEP +5

HOB:
LEP +30m

Sun Access

Setbacks

FSR:
Randomly
generated

HOB:
Randomly
generated

Sun Access

Setbacks

Table 2: Mass Itera�ons using Beluga

60

These itera�ons can be found on h�ps://nazmulazimkhan.github.io/beluga , and show how individual

planning control effect a city as a whole making it useful when tes�ng new building policies to

foresee any consequences and opportuni�es.

Statistical Output

Beluga produces floorplates for every building envelope, there are a number of sta�s�cs that can be

automa�cally generated from this. On an urban scale, there is leeway for general assump�ons in the

calcula�ons. Beluga generates the following values which can be exported as a .CSV file that can be

opened in any spreadsheet program.

Figure 27: Sta�s�cal Output

Gross Building Area (GBA)

The total area in square meters of all the floors in a building. This is prior to architectural

considera�ons such as the setbacks of exterior walls.

Gross Floor Area (GFA)

The total area of usable floor space inside a building. The GFA was calculated to be 80% of the GBA.

This is a percentage that can be changed within the script to provides a rough es�mate of what the

GFA would be.

Residential floor area (RESI) and Commercial floor area (COMM)

61

Beluga allows users to set a percentage that determines the total area of residen�al and commercial

floor space. The example above calculates the residen�al floor area as 60% of the GFA, and the

commercial area as 40%.

Number of Dwellings and Number of Jobs

Number of dwellings is calculated based on the assump�on that for every 80m ² of residen�al area

there is 1 dwelling. Number of jobs is calculated based on the assump�on that for every 35m ² of

commercial area there is 1 job.

While being heuris�c, these calcula�ons can help guide policy makers in the process of making laws.

They can also help developers understand what sort of sta�s�cs to expect when developing a

property.

Virtual Reality and Facade generator

The representa�on of a 3D model plays an important role as to how it's perceived. Typically 3D

models in urban planning are represented through diagrams and 2D drawings. The web GIS pla�orm

developed for the permissible envelope script, Beluga, (h�ps://nazmulazimkhan.github.io/beluga)

demonstrates how an interac�ve 3D model can give a greater understanding of context than s�ll

images.

However, when interviewing Peter Holt he expressed that the ‘fly over’ view of a city is not not a real

human experience. “Walking along the street looking up, that's a much more realis�c representa�on.

[...] The really interes�ng thing from the street view is that the human consciousness only allows you

to really contemplate ten to twelve stories up. Beyond that it's just something else.”

To make a more realis�c representa�on, a Grasshopper script was developed to generate a simple

facade on the permissible building envelopes. The script generated floor slabs, mullions and glazing

using the floorplates made by Beluga. The image below is a render taken from a street view. The

street view, and basic building elements give an indica�on of how tall the buildings really are.

62

Figure 28: (Top) Facade generator (Bo�om) Exis�ng context

To see how the output of Beluga compares to real life, a screenshot was taken from Google Street

Maps from the same loca�on. This model could poten�ally be connected into a Virtual Reality

system, where developers and policy makers could explore the space at a 1:1 scale. This could

poten�ally change the way policies are made, as the tool could help analyse architectural problems,

that are specific to the ground level, such as circula�on from a human perspec�ve. This enables a

new type of urban analysis, from a human scale.

Dugong: Decision Support System

Dugong is a interac�ve website that acts as a decision support tool for urban schemes. It is a

pla�orm designed for developers rather than policy makers. The website allows users to ‘sketch’

design proposals and receive immediate feedback of the forms compliance with building policies.

63

Dugong visualises the permissible building envelopes generated from Beluga to guide users to design

within the maximum buildable space.

Figure 29: Dugong web app (Johanson, 2017)

Dugong was developed by Madeleine Johanson, in parallel to the research in this paper. It is

documented in the paper Adjudicating by Algorithm: Creating an open web platform for interaction

with the law.

64

CONCLUSION

Evaluation
This research explores how the concept of ‘law as code’ can benefit the domain of urban planning.

The aims of the research were addressed through a script that interprets planning policies and

generates permissible building envelopes to effec�vely communicate the law.

Beluga’s role in this research was to interpret laws to generate permissible building envelopes. By

doing so, the script itself can be considered a document of the law. Each and every process that

contributes to the genera�on of the building envelope can be seen. From the perspec�ve of a policy

maker, Beluga streamlines tes�ng and simula�on of new urban schemes. Parameters within the

script can be changed to alter the effects of policies, or new policies can be implemented into the

script. This supports a more itera�ve process to policy making, where poten�ally hundreds of

versions could be tested and evaluated before they are implemented. From the perspec�ve of a

developer, Beluga is advantageous because the permissible building envelopes define the buildable

space on a site. As policies change over �me, the developer will only have to look at the most recent

envelope to instantly understand building poten�al and constraints of a site.

Transparency has been achieved through Minke, the versioning tool, which shows the development

and change of building policies over �me. As the law is updated, the building envelopes change and

are versioned into a repository. This benefits both developers and policy makers as they can see

what, when and how something has changed.

Reaching the objec�ve exposed problems in the disciplines of urban planning and computa�onal

design. Humpback was developed as a consequence of this, and directly addresses the aim of using

interdisciplinary techniques to improve workflows within urban planning. The plugin allows for a

bi-direc�onal flow between two so�wares, in a streamlined process that wasn't available prior to this

research.

Overall, these tools have demonstrated how the integra�on of law, computa�onal design and urban

planning can benefit each other.

Future work

Beluga:

65

For future development, the following policies could be added to Beluga:

● Heritage - to determine what lots are heritage

● Land Use integra�on - allowing different envelopes to generate based on its land use

● Ownership - buildings ownerships rules that can merge lots

Topography was not addressed in this research, but topographical considera�ons could be used to

drive how policies are conceived.

Minke:

Minke has not yet been released on Food4Rhino, and further plans for development and

func�onality are in progress, with an aim to support collabora�ve workflows. As well as file

versioning, Minke could also be used to backup scripts, add comments, history slider, data dam and

support mul�-file gists. Informa�on Security will be addressed in the produc�on version.

Humpback:

Humpback was released as a plugin for Grasshopper on Food4Rhino in March of 2017. Since its ini�al

release, a new version of Humpback has been uploaded. Humpback 1.1 features minor bug fixes and

faster processing components. Currently, Humpback only supports the conversion of polygons.

Future work would consider expanding to different geometry types, such as points and lines.

Exposure

Two conference papers have been presented alongside the inves�ga�on.

1. Urban Planning and Property Development Conference (UPPD 2017), Singapore:

Presents Humpback as a GeoJSON compa�bility tool for Grasshopper and UrbanCoDe as a

presenta�on pla�orm.

2. Urban Design Conference (UD 2017), Surfers Paradise, QLD:

The conversion of law to code, presen�ng Beluga, Dugong and Minke as computa�onal tools.

66

Fin

Permissible building envelopes are not the extent of how law as code can benefit urban planning,

they are merely one applica�on. This research suggests that while the concept of laws documented

as computer code may be considered utopian, adop�on of these processes may improve the

efficiency of many more disciplines. Although there are many obstacles, with further research,

perhaps law as code will no longer be purely specula�on.

67

 REFERENCES

AURIN. (2010). The AURIN Journey, Australian Urban Research Infrastructure Network.

< h�ps://aurin.org.au/about/the-aurin-journey/ > (Accessed: 2nd September 2017)

Bolton, P. and Dewatripont, M. (2005) Contract Theory. MIT Press.

Cassidy, M. (2015) Centaur Chess Shows Power of Teaming Human and Machine, Huffpost. Available

at: < h�p://www.huffingtonpost.com/mike-cassidy/centaur-chess-shows-power_b_6383606.html >

(Accessed: 27 September 2017)

Carlile, J. (2017) Flux Metro: What We Learned – FLUX. Available at:

h�ps://blog.flux.io/flux-metro-what-we-learned-11fc82b6de03 (Accessed: 7th June 2017).

Central Sydney Planning Strategy (2016) City of Sydney. Available at:

<h�p://www.cityofsydney.nsw.gov.au/__data/assets/pdf_file/0006/260187/160719_PDC_ITEM04_

ATTACHMENTA1.PDF> (Accessed: 17th September 2017).

Dalakov, G. (2017) History of Computers and Compu�ng, Dreamers, Ramon Llull. Available at:

h�p://history-computer.com/Dreamers/Llull.html (Accessed: 16 September 2017).

Davis, D., Burry, J., Burry, M. (2011) Untangling Parametric Schemata :Enhancing Collabora�on

Through Modular Programming. In Designing Together: Proceedings Of The 14th Interna�onal

Conference On Computer Aided Architectural Design Futures

Davis, D., (2015) Why Architects Can’t Be Automated, Architect Magazine

< h�p://www.architectmagazine.com/technology/why-architects-cant-be-automated_o > (Accessed

20th March 2017)

Didech, K. (2015) Flux Metro: A Be�er Way To Visualize Development Code - CodeX - Stanford Law

School.

< h�ps://law.stanford.edu/2015/03/05/flux-metro-a-be�er-way-to-visualize-development-code/ >

(Accessed 7th June 2017)

Drummond, W.J. and French, S.P., 2008. The Future Of Gis In Planning: Converging Technologies And

Diverging Interests. Journal of the American Planning Associa�on

Genesereth, M. (2015) Computa�onal Law: The Cop in the Backseat. Available at:

h�p://complaw.stanford.edu/ (Accessed: 1st September 2017)

68

Geojson (2017) GeoJSON. < h�p://geojson.org/ > (Accessed 4th November 2017)

Golder, B., 2011. RhinoCommon/Grasshopper: A New Class for Geometry with Key/Value Pairs?

UserData?. Available at:

<h�p://www.grasshopper3d.com/forum/topics/rhinocommongrasshopper-a-new> (Accessed 21st

March 2017)

GISGEOGRAPHY (2017) The Ul�mate List of GIS Formats - Geospa�al File Extensions, GIS Geography.

< h�p://gisgeography.com/gis-formats/ > (Accessed 4th November 2017)

Hershowitz, A. Public Policy: What are the nontechnical barriers to adop�ng a version control system

for use in wri�ng bills and new laws? Available at:

<h�ps://www.quora.com/Public-Policy-What-are-the-nontechnical-barriers-to-adop�ng-a-version-c

ontrol-system-for-use-in-wri�ng-bills-and-new-laws> (Accessed 4th November 2017)

Hickok, J. A., 2014. A Web GIS Framework for Simula�ng Pre-incident

Planning, s.l.: s.n.

History.com Staff (2009) CODE OF HAMMURABI. Available at:

<h�p://www.history.com/topics/ancient-history/hammurabi> (Accessed: 3 October 2017).

IBM (2017) IBM100 - Deep Blue, IBM 100. Available at:

<h�p://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/> (Accessed: 3 October 2017).

Jones, R. (2014) Shapefiles, GeoJSON and KML.< h�p://appren�ce.craic.com/tutorials/28 > (Accessed

1st May 2017).

Janssen, P., STOUFFS, R., MOHANTY, A., TAN, E. (2016) ‘Parametric Modelling with GIS’, eCAADe 2016

JSON (2017) JSON. < h�p://www.json.org/ > (Accessed 4th November 2017)

Katz, Y. (2012) Noam Chomsky on Where Ar�ficial Intelligence Went Wrong, The Atlan�c. Available

at:

h�ps://www.theatlan�c.com/technology/archive/2012/11/noam-chomsky-on-where-ar�ficial-intelli

gence-went-wrong/261637/ (Accessed: 1 October 2017).

Kuus, H. (2002) ‘Interoperability of Geographical Informa�on Systems’. Tallinn Technical University

69

Love, N. and Genesereth, M. (2005) ‘Computa�onal Law’, in ICAIL ’05. Available at:

h�p://web.stanford.edu/group/codex/cgi-bin/codex/wp-content/uploads/2014/01/p205-love.pdf

(Accessed: 4 September 2017).

Mcaffee, A. And Brynjolfsson, E. (2017) Machine, Pla�orm, Crowd. W. W. Norton & Company, Inc.

Menges, A. And Ahlquist, S. (2011) Computa�onal Design Thinking. John Wiley & Sons.

Musk, E. (2015) Human driven cars may be outlawed because they’re too dangerous, Twi�er.

Available at:

h�ps://twi�er.com/elonmusk/status/577946893646364673?ref_src=twsrc%5E�w&ref_url=h�ps://

www.washingtonpost.com/news/the-switch/wp/2015/03/18/elon-musk-human-driven-cars-may-be

-outlawed-because-theyre-too-dangerous/ (Accessed: 3 October 2017).

O’brien, R. (1998) Ac�on Research Methodology. Available at: < h�p://web.net/~robrien/papers/xx

ar final.html > (Accessed 16th August 2017).

Open Defini�on (2017) Open Defini�on 2.0. Available at: < h�p://opendefini�on.org/od/2.0/en/ >

(Accessed 22nd August 2017).

Perry, M. (2014) ‘iDecide: the legal implica�ons of automated decision-making’. Available at:

h�p://www.fedcourt.gov.au/digital-law-library/judges-speeches/jus�ce-perry/perry-j-20140915

(Accessed: 12 May 2017).

Poulshock, M. (2016) HammurabiProject. Available at:

<h�ps://github.com/mpoulshock/HammurabiProject/wiki/Project-ra�onale > (Accessed 11th August

2017).

Thomson, J (1985) The Trolley Problem. The Yale Law Journal, Vol. 94, No. 6. The Yale Law Journal

Company, Inc.

Wheatley, M. (2017) realtybiznews. Available at:

<h�p://realtybiznews.com/envelope-lands-2m-funding-to-build-out-zoning-analysis-tool/98741387/

> (Accessed 30th May 2017).

Woodbury, R. (2010) Elements of Parametric Design, Abingdon: Routledge.

Saulwick,J.,Visen�n,. (2016) CBD boom �me: City of Sydney says the only way is up. Available at:

<h�p://www.smh.com.au/nsw/cbd-boom-�me-city-of-sydney-says-the-only-way-is-up-20160713-gq

4vhb.html> (Accessed 4th March 2017).

70

Senske, N. (2005) ‘Fear Of Code: An Approach To Integra�ng Computa�on With Architectural Design’,

Massachuse�s Ins�tute of Technology.

Shirky, C. (2012) Clay Shirky: How the Internet will (one day) transform government, TED Talk

< h�ps://www.ted.com/talks/clay_shirky_how_the_internet_will_one_day_transform_government >

(Accessed 3rd October 2017).

Winograd, T. (1972) ‘Understanding Natural Language’, Systems Research and Behavioral Science.

Academic Press, Inc.

Zetlin, M. (2010) Doc or Docx? Which Office Format to Use.

<h�ps://www.inc.com/so�ware/ar�cles/201002/doc.html> (Accessed 3rd July 2017).

71

